Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313455161> ?p ?o ?g. }
- W4313455161 endingPage "1921" @default.
- W4313455161 startingPage "1913" @default.
- W4313455161 abstract "Heart rate characteristics aid early detection of late-onset sepsis (LOS), but respiratory data contain additional signatures of illness due to infection. Predictive models using cardiorespiratory data may improve early sepsis detection. We hypothesized that heart rate (HR) and oxygenation (SpO2) data contain signatures that improve sepsis risk prediction over HR or demographics alone.We analyzed cardiorespiratory data from very low birth weight (VLBW, <1500 g) infants admitted to three NICUs. We developed and externally validated four machine learning models to predict LOS using features calculated every 10 m: mean, standard deviation, skewness, kurtosis of HR and SpO2, and cross-correlation. We compared feature importance, discrimination, calibration, and dynamic prediction across models and cohorts. We built models of demographics and HR or SpO2 features alone for comparison with HR-SpO2 models.Performance, feature importance, and calibration were similar among modeling methods. All models had favorable external validation performance. The HR-SpO2 model performed better than models using either HR or SpO2 alone. Demographics improved the discrimination of all physiologic data models but dampened dynamic performance.Cardiorespiratory signatures detect LOS in VLBW infants at 3 NICUs. Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction.Heart rate characteristics aid early detection of late-onset sepsis, but respiratory data contain signatures of illness due to infection. Predictive models using both heart rate and respiratory data may improve early sepsis detection. A cardiorespiratory early warning score, analyzing heart rate from electrocardiogram or pulse oximetry with SpO2, predicts late-onset sepsis within 24 h across multiple NICUs and detects sepsis better than heart rate characteristics or demographics alone. Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction. The results increase understanding of physiologic signatures of neonatal sepsis." @default.
- W4313455161 created "2023-01-06" @default.
- W4313455161 creator A5006934521 @default.
- W4313455161 creator A5015455919 @default.
- W4313455161 creator A5032225018 @default.
- W4313455161 creator A5047422464 @default.
- W4313455161 creator A5051701394 @default.
- W4313455161 creator A5053308228 @default.
- W4313455161 creator A5057433754 @default.
- W4313455161 creator A5067045521 @default.
- W4313455161 creator A5075463824 @default.
- W4313455161 creator A5075821746 @default.
- W4313455161 creator A5079631877 @default.
- W4313455161 creator A5091465052 @default.
- W4313455161 date "2023-01-02" @default.
- W4313455161 modified "2023-10-18" @default.
- W4313455161 title "Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs" @default.
- W4313455161 cites W1487019984 @default.
- W4313455161 cites W1866881459 @default.
- W4313455161 cites W1964404459 @default.
- W4313455161 cites W1974043338 @default.
- W4313455161 cites W1987612621 @default.
- W4313455161 cites W1994682257 @default.
- W4313455161 cites W1996733697 @default.
- W4313455161 cites W2007092752 @default.
- W4313455161 cites W2020822256 @default.
- W4313455161 cites W2053853941 @default.
- W4313455161 cites W2075469780 @default.
- W4313455161 cites W2078271269 @default.
- W4313455161 cites W2081061592 @default.
- W4313455161 cites W2089784001 @default.
- W4313455161 cites W2097663753 @default.
- W4313455161 cites W2114685399 @default.
- W4313455161 cites W2115709314 @default.
- W4313455161 cites W2118183148 @default.
- W4313455161 cites W2118812998 @default.
- W4313455161 cites W2131203083 @default.
- W4313455161 cites W2143375200 @default.
- W4313455161 cites W2166833790 @default.
- W4313455161 cites W2181277892 @default.
- W4313455161 cites W2295721874 @default.
- W4313455161 cites W2559167724 @default.
- W4313455161 cites W2768502929 @default.
- W4313455161 cites W2790409903 @default.
- W4313455161 cites W2806693383 @default.
- W4313455161 cites W2897425389 @default.
- W4313455161 cites W2901728423 @default.
- W4313455161 cites W2914675443 @default.
- W4313455161 cites W2915312288 @default.
- W4313455161 cites W2919115771 @default.
- W4313455161 cites W2920116900 @default.
- W4313455161 cites W2959715303 @default.
- W4313455161 cites W3009777728 @default.
- W4313455161 cites W3033551534 @default.
- W4313455161 cites W3102476541 @default.
- W4313455161 cites W3125024173 @default.
- W4313455161 cites W3127845667 @default.
- W4313455161 cites W3136181576 @default.
- W4313455161 cites W3181808008 @default.
- W4313455161 cites W3196722551 @default.
- W4313455161 cites W3211782957 @default.
- W4313455161 cites W4206936848 @default.
- W4313455161 cites W4220722250 @default.
- W4313455161 cites W4241053014 @default.
- W4313455161 cites W4296773808 @default.
- W4313455161 cites W4306912797 @default.
- W4313455161 cites W4308149553 @default.
- W4313455161 doi "https://doi.org/10.1038/s41390-022-02444-7" @default.
- W4313455161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36593281" @default.
- W4313455161 hasPublicationYear "2023" @default.
- W4313455161 type Work @default.
- W4313455161 citedByCount "2" @default.
- W4313455161 countsByYear W43134551612023 @default.
- W4313455161 crossrefType "journal-article" @default.
- W4313455161 hasAuthorship W4313455161A5006934521 @default.
- W4313455161 hasAuthorship W4313455161A5015455919 @default.
- W4313455161 hasAuthorship W4313455161A5032225018 @default.
- W4313455161 hasAuthorship W4313455161A5047422464 @default.
- W4313455161 hasAuthorship W4313455161A5051701394 @default.
- W4313455161 hasAuthorship W4313455161A5053308228 @default.
- W4313455161 hasAuthorship W4313455161A5057433754 @default.
- W4313455161 hasAuthorship W4313455161A5067045521 @default.
- W4313455161 hasAuthorship W4313455161A5075463824 @default.
- W4313455161 hasAuthorship W4313455161A5075821746 @default.
- W4313455161 hasAuthorship W4313455161A5079631877 @default.
- W4313455161 hasAuthorship W4313455161A5091465052 @default.
- W4313455161 hasBestOaLocation W43134551612 @default.
- W4313455161 hasConcept C117437137 @default.
- W4313455161 hasConcept C119857082 @default.
- W4313455161 hasConcept C126322002 @default.
- W4313455161 hasConcept C144024400 @default.
- W4313455161 hasConcept C149923435 @default.
- W4313455161 hasConcept C2777953023 @default.
- W4313455161 hasConcept C2778384902 @default.
- W4313455161 hasConcept C2780084366 @default.
- W4313455161 hasConcept C41008148 @default.
- W4313455161 hasConcept C45804977 @default.
- W4313455161 hasConcept C71924100 @default.