Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313455424> ?p ?o ?g. }
- W4313455424 abstract "Abstract Energy systems face challenges due to climate change, distributed energy resources, and political agenda, especially distribution system operators (DSOs) responsible for ensuring grid stability. Accurate predictions of the electricity load can help DSOs better plan and maintain their grids. The study aims to test a systematic data identification and selection process to forecast the electricity load of Danish residential areas. The five-ecosystem CSTEP framework maps relevant independent variables on the cultural, societal, technological, economic, and political dimensions. Based on the literature, a recurrent neural network (RNN), long-short-term memory network (LSTM), gated recurrent unit (GRU), and feed-forward network (FFN) are evaluated and compared. The models are trained and tested using different data inputs and forecasting horizons to assess the impact of the systematic approach and the practical flexibility of the models. The findings show that the models achieve equal performances of around 0.96 adjusted R 2 score and 4–5% absolute percentage error for the 1-h predictions. Forecasting 24 h gave an adjusted R 2 of around 0.91 and increased the error slightly to 6–7% absolute percentage error. The impact of the systematic identification approach depended on the type of neural network, with the FFN showing the highest increase in error when removing the supporting variables. The GRU and LSTM did not rely on the identified variables, showing minimal changes in performance with or without them. The systematic approach to data identification can help researchers better understand the data inputs and their impact on the target variable. The results indicate that a focus on curating data inputs affects the performance more than choosing a specific type of neural network architecture." @default.
- W4313455424 created "2023-01-06" @default.
- W4313455424 creator A5020850598 @default.
- W4313455424 creator A5027303908 @default.
- W4313455424 creator A5076322755 @default.
- W4313455424 date "2022-12-21" @default.
- W4313455424 modified "2023-09-26" @default.
- W4313455424 title "Evaluation of neural networks for residential load forecasting and the impact of systematic feature identification" @default.
- W4313455424 cites W1967596937 @default.
- W4313455424 cites W2011967773 @default.
- W4313455424 cites W2046933993 @default.
- W4313455424 cites W2064675550 @default.
- W4313455424 cites W2130386989 @default.
- W4313455424 cites W2142264028 @default.
- W4313455424 cites W2157331557 @default.
- W4313455424 cites W2159026431 @default.
- W4313455424 cites W2160475665 @default.
- W4313455424 cites W2160726107 @default.
- W4313455424 cites W2247352014 @default.
- W4313455424 cites W2559996664 @default.
- W4313455424 cites W2610980399 @default.
- W4313455424 cites W2736333888 @default.
- W4313455424 cites W2760214937 @default.
- W4313455424 cites W2771979366 @default.
- W4313455424 cites W2782679503 @default.
- W4313455424 cites W2790459114 @default.
- W4313455424 cites W2898195966 @default.
- W4313455424 cites W2911003593 @default.
- W4313455424 cites W2914619967 @default.
- W4313455424 cites W2919639206 @default.
- W4313455424 cites W2923573337 @default.
- W4313455424 cites W2941906448 @default.
- W4313455424 cites W2943690126 @default.
- W4313455424 cites W2966527737 @default.
- W4313455424 cites W2967922229 @default.
- W4313455424 cites W2970960007 @default.
- W4313455424 cites W2995642610 @default.
- W4313455424 cites W2996216134 @default.
- W4313455424 cites W2999174692 @default.
- W4313455424 cites W3000880451 @default.
- W4313455424 cites W3003829848 @default.
- W4313455424 cites W3021030633 @default.
- W4313455424 cites W3046886259 @default.
- W4313455424 cites W3087129918 @default.
- W4313455424 cites W3113636312 @default.
- W4313455424 cites W3145208339 @default.
- W4313455424 cites W3163780794 @default.
- W4313455424 cites W3175399890 @default.
- W4313455424 cites W3183970158 @default.
- W4313455424 cites W3200680133 @default.
- W4313455424 cites W4214753783 @default.
- W4313455424 cites W4226445133 @default.
- W4313455424 cites W4285047222 @default.
- W4313455424 doi "https://doi.org/10.1186/s42162-022-00224-5" @default.
- W4313455424 hasPublicationYear "2022" @default.
- W4313455424 type Work @default.
- W4313455424 citedByCount "0" @default.
- W4313455424 crossrefType "journal-article" @default.
- W4313455424 hasAuthorship W4313455424A5020850598 @default.
- W4313455424 hasAuthorship W4313455424A5027303908 @default.
- W4313455424 hasAuthorship W4313455424A5076322755 @default.
- W4313455424 hasBestOaLocation W43134554241 @default.
- W4313455424 hasConcept C105795698 @default.
- W4313455424 hasConcept C116834253 @default.
- W4313455424 hasConcept C119857082 @default.
- W4313455424 hasConcept C124101348 @default.
- W4313455424 hasConcept C139945424 @default.
- W4313455424 hasConcept C149782125 @default.
- W4313455424 hasConcept C162324750 @default.
- W4313455424 hasConcept C2780598303 @default.
- W4313455424 hasConcept C33923547 @default.
- W4313455424 hasConcept C41008148 @default.
- W4313455424 hasConcept C50644808 @default.
- W4313455424 hasConcept C59822182 @default.
- W4313455424 hasConcept C86803240 @default.
- W4313455424 hasConceptScore W4313455424C105795698 @default.
- W4313455424 hasConceptScore W4313455424C116834253 @default.
- W4313455424 hasConceptScore W4313455424C119857082 @default.
- W4313455424 hasConceptScore W4313455424C124101348 @default.
- W4313455424 hasConceptScore W4313455424C139945424 @default.
- W4313455424 hasConceptScore W4313455424C149782125 @default.
- W4313455424 hasConceptScore W4313455424C162324750 @default.
- W4313455424 hasConceptScore W4313455424C2780598303 @default.
- W4313455424 hasConceptScore W4313455424C33923547 @default.
- W4313455424 hasConceptScore W4313455424C41008148 @default.
- W4313455424 hasConceptScore W4313455424C50644808 @default.
- W4313455424 hasConceptScore W4313455424C59822182 @default.
- W4313455424 hasConceptScore W4313455424C86803240 @default.
- W4313455424 hasIssue "S4" @default.
- W4313455424 hasLocation W43134554241 @default.
- W4313455424 hasLocation W43134554242 @default.
- W4313455424 hasLocation W43134554243 @default.
- W4313455424 hasLocation W43134554244 @default.
- W4313455424 hasOpenAccess W4313455424 @default.
- W4313455424 hasPrimaryLocation W43134554241 @default.
- W4313455424 hasRelatedWork W1592972299 @default.
- W4313455424 hasRelatedWork W2332256921 @default.
- W4313455424 hasRelatedWork W2362972152 @default.
- W4313455424 hasRelatedWork W2386387936 @default.
- W4313455424 hasRelatedWork W2524230376 @default.