Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313458416> ?p ?o ?g. }
- W4313458416 endingPage "17" @default.
- W4313458416 startingPage "1" @default.
- W4313458416 abstract "The market scale of electric shavers in China has reached ¥ 26.3 billion in 2021. Consumers currently place an increasing emphasis on the Kansei image conveyed by products rather than just concerning with functional satisfaction. To meet consumers’ expectations, the emotional message conveyed by product design is essential under multisensory channels. This research first collected 230 electric shavers samples and 135 pairs of consumers’ Kansei words, then reduced them into 34 representative samples using multidimensional scale and clustering analysis, with 4 groups of representative Kansei words selected via the expert group. Moreover, consumers’ Kansei images were evaluated via questionnaire using the semantic differential scales, with 416 valid samples acquired in total. Meanwhile, design elements of the samples (including item and category) were classified by ways of morphological analysis and audio software. At last, the prediction models of the electric shavers were established between the overall design elements and user’s Kansei evaluation under the multisensory channel of visual model and auditory audio taking advantage of Quantification Theory Type I , back propagation neural network, and genetic algorithm-based BPNN. The proposed models can provide defined design indexes and references in multisensory design, facilitating designers to design in a logical and scientific manner rather than designing as per experience." @default.
- W4313458416 created "2023-01-06" @default.
- W4313458416 creator A5042098778 @default.
- W4313458416 creator A5049191493 @default.
- W4313458416 creator A5062086260 @default.
- W4313458416 creator A5071201575 @default.
- W4313458416 date "2023-01-03" @default.
- W4313458416 modified "2023-10-18" @default.
- W4313458416 title "Multisensory Design of Electric Shavers Based on Kansei Engineering and Artificial Neural Networks" @default.
- W4313458416 cites W1989474011 @default.
- W4313458416 cites W2045523936 @default.
- W4313458416 cites W2068713653 @default.
- W4313458416 cites W2130695837 @default.
- W4313458416 cites W2282731996 @default.
- W4313458416 cites W2399641920 @default.
- W4313458416 cites W2898359605 @default.
- W4313458416 cites W2902237356 @default.
- W4313458416 cites W2966401018 @default.
- W4313458416 cites W2999506547 @default.
- W4313458416 cites W2999602349 @default.
- W4313458416 cites W3003390475 @default.
- W4313458416 cites W3006428966 @default.
- W4313458416 cites W3007053193 @default.
- W4313458416 cites W3009081138 @default.
- W4313458416 cites W3010657130 @default.
- W4313458416 cites W3043773733 @default.
- W4313458416 cites W3044892747 @default.
- W4313458416 cites W3092684061 @default.
- W4313458416 cites W3094704314 @default.
- W4313458416 cites W3154414290 @default.
- W4313458416 cites W3159491374 @default.
- W4313458416 cites W3166472125 @default.
- W4313458416 cites W3192181704 @default.
- W4313458416 cites W3201396809 @default.
- W4313458416 cites W3213108513 @default.
- W4313458416 cites W4205123573 @default.
- W4313458416 cites W4281625471 @default.
- W4313458416 cites W4284892816 @default.
- W4313458416 cites W4286436530 @default.
- W4313458416 cites W4297600109 @default.
- W4313458416 cites W4306149618 @default.
- W4313458416 doi "https://doi.org/10.1155/2023/1188537" @default.
- W4313458416 hasPublicationYear "2023" @default.
- W4313458416 type Work @default.
- W4313458416 citedByCount "0" @default.
- W4313458416 crossrefType "journal-article" @default.
- W4313458416 hasAuthorship W4313458416A5042098778 @default.
- W4313458416 hasAuthorship W4313458416A5049191493 @default.
- W4313458416 hasAuthorship W4313458416A5062086260 @default.
- W4313458416 hasAuthorship W4313458416A5071201575 @default.
- W4313458416 hasBestOaLocation W43134584161 @default.
- W4313458416 hasConcept C107457646 @default.
- W4313458416 hasConcept C120823896 @default.
- W4313458416 hasConcept C121332964 @default.
- W4313458416 hasConcept C138496976 @default.
- W4313458416 hasConcept C154945302 @default.
- W4313458416 hasConcept C15744967 @default.
- W4313458416 hasConcept C2524010 @default.
- W4313458416 hasConcept C2778755073 @default.
- W4313458416 hasConcept C2780562538 @default.
- W4313458416 hasConcept C2781297728 @default.
- W4313458416 hasConcept C33923547 @default.
- W4313458416 hasConcept C41008148 @default.
- W4313458416 hasConcept C43020497 @default.
- W4313458416 hasConcept C50644808 @default.
- W4313458416 hasConcept C62520636 @default.
- W4313458416 hasConcept C90673727 @default.
- W4313458416 hasConceptScore W4313458416C107457646 @default.
- W4313458416 hasConceptScore W4313458416C120823896 @default.
- W4313458416 hasConceptScore W4313458416C121332964 @default.
- W4313458416 hasConceptScore W4313458416C138496976 @default.
- W4313458416 hasConceptScore W4313458416C154945302 @default.
- W4313458416 hasConceptScore W4313458416C15744967 @default.
- W4313458416 hasConceptScore W4313458416C2524010 @default.
- W4313458416 hasConceptScore W4313458416C2778755073 @default.
- W4313458416 hasConceptScore W4313458416C2780562538 @default.
- W4313458416 hasConceptScore W4313458416C2781297728 @default.
- W4313458416 hasConceptScore W4313458416C33923547 @default.
- W4313458416 hasConceptScore W4313458416C41008148 @default.
- W4313458416 hasConceptScore W4313458416C43020497 @default.
- W4313458416 hasConceptScore W4313458416C50644808 @default.
- W4313458416 hasConceptScore W4313458416C62520636 @default.
- W4313458416 hasConceptScore W4313458416C90673727 @default.
- W4313458416 hasFunder F4320325142 @default.
- W4313458416 hasLocation W43134584161 @default.
- W4313458416 hasOpenAccess W4313458416 @default.
- W4313458416 hasPrimaryLocation W43134584161 @default.
- W4313458416 hasRelatedWork W1981504922 @default.
- W4313458416 hasRelatedWork W1983795747 @default.
- W4313458416 hasRelatedWork W2116856683 @default.
- W4313458416 hasRelatedWork W2171827594 @default.
- W4313458416 hasRelatedWork W2362403288 @default.
- W4313458416 hasRelatedWork W2365988382 @default.
- W4313458416 hasRelatedWork W4283657785 @default.
- W4313458416 hasRelatedWork W4313458416 @default.
- W4313458416 hasRelatedWork W4383617823 @default.
- W4313458416 hasRelatedWork W2471099430 @default.
- W4313458416 hasVolume "2023" @default.