Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313458547> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4313458547 abstract "Abstract Polygenic risk score (PRS) is a quantity that aggregates the effects of variants across the genome and estimates an individual’s genetic predisposition for a given trait. PRS analysis typically contains two input data sets: base data for effect size estimation and target data for individual-level prediction. Given the availability of large-scale base data, it becomes more common that the ancestral background of base and target data do not perfectly match. In this paper, we treat the GWAS summary information obtained in the base data as knowledge learned from a pre-trained model, and adopt a transfer learning framework to effectively leverage the knowledge learned from the base data that may or may not have similar ancestral background as the target samples to build prediction models for target individuals. Our proposed transfer learning framework consists of two main steps: (1) conducting false negative control (FNC) marginal screening to extract useful knowledge from the base data; and (2) performing joint model training to integrate the knowledge extracted from base data with the target training data for accurate trans-data prediction. This new approach can significantly enhance the computational and statistical efficiency of joint-model training, alleviate over-fitting, and facilitate more accurate trans-data prediction when heterogeneity level between target and base data sets is small or high. Author summary Polygenic risk score (PRS) can quantify the genetic predisposition for a trait. PRS construction typically contains two input datasets: base data for variant-effect estimation and target data for individual-level prediction. Given the availability of large-scale base data, it becomes common that the ancestral background of base and target data do not perfectly match. In this paper, we introduce a PRS method under a transfer learning framework to effectively leverage the knowledge learned from the base data that may or may not have similar background as the target samples to build prediction models for target individuals. Our method first utilizes a unique false-negative control strategy to extract useful information from base data while ensuring to retain a high proportion of true signals; it then applies the extracted information to re-train PRS models in a statistically and computationally efficient fashion. We use numerical studies based on simulated and real data to show that the proposed method can increase the accuracy and robustness of polygenic prediction across different ranges of heterogeneities between base and target data and sample sizes, reduce computational cost in model re-training, and result in more parsimonious models that can facilitate PRS interpretation and/or exploration of complex, non-additive PRS models." @default.
- W4313458547 created "2023-01-06" @default.
- W4313458547 creator A5006382865 @default.
- W4313458547 creator A5016146373 @default.
- W4313458547 creator A5076605277 @default.
- W4313458547 date "2023-01-03" @default.
- W4313458547 modified "2023-10-18" @default.
- W4313458547 title "Transfer Learning with False Negative Control Improves Polygenic Risk Prediction" @default.
- W4313458547 cites W1964866242 @default.
- W4313458547 cites W1981946201 @default.
- W4313458547 cites W1990824174 @default.
- W4313458547 cites W1994910261 @default.
- W4313458547 cites W2002466929 @default.
- W4313458547 cites W2022545037 @default.
- W4313458547 cites W2098597355 @default.
- W4313458547 cites W2101432452 @default.
- W4313458547 cites W2102270144 @default.
- W4313458547 cites W2110048796 @default.
- W4313458547 cites W2112659545 @default.
- W4313458547 cites W2115801316 @default.
- W4313458547 cites W2153118028 @default.
- W4313458547 cites W2154560360 @default.
- W4313458547 cites W2169795969 @default.
- W4313458547 cites W2613151407 @default.
- W4313458547 cites W2741020202 @default.
- W4313458547 cites W2794694102 @default.
- W4313458547 cites W2889800760 @default.
- W4313458547 cites W2901303766 @default.
- W4313458547 cites W2935941183 @default.
- W4313458547 cites W2958615822 @default.
- W4313458547 cites W2991034145 @default.
- W4313458547 cites W3012787339 @default.
- W4313458547 cites W3022430584 @default.
- W4313458547 cites W3048963803 @default.
- W4313458547 cites W3103768255 @default.
- W4313458547 cites W3128031707 @default.
- W4313458547 cites W3147613356 @default.
- W4313458547 cites W3181602837 @default.
- W4313458547 cites W3207277428 @default.
- W4313458547 cites W4220673804 @default.
- W4313458547 doi "https://doi.org/10.1101/2023.01.02.522532" @default.
- W4313458547 hasPublicationYear "2023" @default.
- W4313458547 type Work @default.
- W4313458547 citedByCount "0" @default.
- W4313458547 crossrefType "posted-content" @default.
- W4313458547 hasAuthorship W4313458547A5006382865 @default.
- W4313458547 hasAuthorship W4313458547A5016146373 @default.
- W4313458547 hasAuthorship W4313458547A5076605277 @default.
- W4313458547 hasBestOaLocation W43134585471 @default.
- W4313458547 hasConcept C106934330 @default.
- W4313458547 hasConcept C119857082 @default.
- W4313458547 hasConcept C124101348 @default.
- W4313458547 hasConcept C134306372 @default.
- W4313458547 hasConcept C150899416 @default.
- W4313458547 hasConcept C153083717 @default.
- W4313458547 hasConcept C154945302 @default.
- W4313458547 hasConcept C199360897 @default.
- W4313458547 hasConcept C33923547 @default.
- W4313458547 hasConcept C41008148 @default.
- W4313458547 hasConcept C42058472 @default.
- W4313458547 hasConcept C4554734 @default.
- W4313458547 hasConceptScore W4313458547C106934330 @default.
- W4313458547 hasConceptScore W4313458547C119857082 @default.
- W4313458547 hasConceptScore W4313458547C124101348 @default.
- W4313458547 hasConceptScore W4313458547C134306372 @default.
- W4313458547 hasConceptScore W4313458547C150899416 @default.
- W4313458547 hasConceptScore W4313458547C153083717 @default.
- W4313458547 hasConceptScore W4313458547C154945302 @default.
- W4313458547 hasConceptScore W4313458547C199360897 @default.
- W4313458547 hasConceptScore W4313458547C33923547 @default.
- W4313458547 hasConceptScore W4313458547C41008148 @default.
- W4313458547 hasConceptScore W4313458547C42058472 @default.
- W4313458547 hasConceptScore W4313458547C4554734 @default.
- W4313458547 hasLocation W43134585471 @default.
- W4313458547 hasOpenAccess W4313458547 @default.
- W4313458547 hasPrimaryLocation W43134585471 @default.
- W4313458547 hasRelatedWork W2946016983 @default.
- W4313458547 hasRelatedWork W2960456850 @default.
- W4313458547 hasRelatedWork W3015887428 @default.
- W4313458547 hasRelatedWork W3021430260 @default.
- W4313458547 hasRelatedWork W4281645081 @default.
- W4313458547 hasRelatedWork W4308262314 @default.
- W4313458547 hasRelatedWork W4312200629 @default.
- W4313458547 hasRelatedWork W4317565044 @default.
- W4313458547 hasRelatedWork W4361193208 @default.
- W4313458547 hasRelatedWork W4382286161 @default.
- W4313458547 isParatext "false" @default.
- W4313458547 isRetracted "false" @default.
- W4313458547 workType "article" @default.