Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313459214> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313459214 abstract "The occurrence of kidney abnormalities (K.Abs) prevalence is elevating which have noxious and deleterious affects all over the world. An automated detection of K.Abs accurately detects and classify with labels by implementing latest DL method with transfer learning approaches. The prior methods were expensive, tedious, arduous and less efficient to detect K.Abs from noisy low frequency images with limited no. of classes and small size dataset. The proposed IA2SKAbs research introduced two effective automated model's 1st was Efficient-b0 and 2nd ResNet-18 which resolve all abovementioned problems expeditiously. Both models enhance the overall accuracy and classification accuracy with large dataset (12446) of CT images along with a greater number of classes which efficiently work in contrast to prior research. Both pre-trained models were trained by altering last three layers or using them from scratch like fully Connected, SoftMax and Classification output layers according to the size of classification problem. Before training of model's dataset was pre-processed with <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$224times 224$</tex> dimensions which are according to the used models. The training accuracy of Efficient-b0 and ResNet-18 99.92% and 99.97%; the overall classification accuracy of both models was 99.99% and 98.1% respectively. The implementation detail of system architecture is discussed below in section 3." @default.
- W4313459214 created "2023-01-06" @default.
- W4313459214 creator A5005035412 @default.
- W4313459214 creator A5005397890 @default.
- W4313459214 creator A5009282836 @default.
- W4313459214 creator A5016051364 @default.
- W4313459214 creator A5018852888 @default.
- W4313459214 creator A5022868240 @default.
- W4313459214 date "2022-10-06" @default.
- W4313459214 modified "2023-10-17" @default.
- W4313459214 title "IA2SKAbs: Intelligent automated and accurate system for classification of kidney abnormalities" @default.
- W4313459214 cites W1577831625 @default.
- W4313459214 cites W2079439626 @default.
- W4313459214 cites W2129720977 @default.
- W4313459214 cites W2343167275 @default.
- W4313459214 cites W2406655075 @default.
- W4313459214 cites W2768248002 @default.
- W4313459214 cites W2782914308 @default.
- W4313459214 cites W2805564751 @default.
- W4313459214 cites W2861622016 @default.
- W4313459214 cites W2907678728 @default.
- W4313459214 cites W2927107250 @default.
- W4313459214 cites W2951166644 @default.
- W4313459214 cites W2962921104 @default.
- W4313459214 cites W2964032833 @default.
- W4313459214 cites W2964273253 @default.
- W4313459214 cites W2979738025 @default.
- W4313459214 cites W2997433616 @default.
- W4313459214 cites W3006594177 @default.
- W4313459214 cites W3016755998 @default.
- W4313459214 cites W3021399285 @default.
- W4313459214 cites W3039038949 @default.
- W4313459214 cites W3097846339 @default.
- W4313459214 cites W3109603475 @default.
- W4313459214 cites W3133324529 @default.
- W4313459214 cites W3162596992 @default.
- W4313459214 cites W3162646453 @default.
- W4313459214 cites W3170903420 @default.
- W4313459214 cites W3185232208 @default.
- W4313459214 cites W4205271019 @default.
- W4313459214 cites W4205850410 @default.
- W4313459214 cites W4206117987 @default.
- W4313459214 cites W4223992687 @default.
- W4313459214 cites W4224920825 @default.
- W4313459214 cites W4285394323 @default.
- W4313459214 doi "https://doi.org/10.1109/iccr56254.2022.9996057" @default.
- W4313459214 hasPublicationYear "2022" @default.
- W4313459214 type Work @default.
- W4313459214 citedByCount "0" @default.
- W4313459214 crossrefType "proceedings-article" @default.
- W4313459214 hasAuthorship W4313459214A5005035412 @default.
- W4313459214 hasAuthorship W4313459214A5005397890 @default.
- W4313459214 hasAuthorship W4313459214A5009282836 @default.
- W4313459214 hasAuthorship W4313459214A5016051364 @default.
- W4313459214 hasAuthorship W4313459214A5018852888 @default.
- W4313459214 hasAuthorship W4313459214A5022868240 @default.
- W4313459214 hasConcept C119857082 @default.
- W4313459214 hasConcept C124101348 @default.
- W4313459214 hasConcept C150899416 @default.
- W4313459214 hasConcept C153180895 @default.
- W4313459214 hasConcept C154945302 @default.
- W4313459214 hasConcept C188441871 @default.
- W4313459214 hasConcept C2776502983 @default.
- W4313459214 hasConcept C2944601119 @default.
- W4313459214 hasConcept C41008148 @default.
- W4313459214 hasConcept C50644808 @default.
- W4313459214 hasConceptScore W4313459214C119857082 @default.
- W4313459214 hasConceptScore W4313459214C124101348 @default.
- W4313459214 hasConceptScore W4313459214C150899416 @default.
- W4313459214 hasConceptScore W4313459214C153180895 @default.
- W4313459214 hasConceptScore W4313459214C154945302 @default.
- W4313459214 hasConceptScore W4313459214C188441871 @default.
- W4313459214 hasConceptScore W4313459214C2776502983 @default.
- W4313459214 hasConceptScore W4313459214C2944601119 @default.
- W4313459214 hasConceptScore W4313459214C41008148 @default.
- W4313459214 hasConceptScore W4313459214C50644808 @default.
- W4313459214 hasLocation W43134592141 @default.
- W4313459214 hasOpenAccess W4313459214 @default.
- W4313459214 hasPrimaryLocation W43134592141 @default.
- W4313459214 hasRelatedWork W2743258233 @default.
- W4313459214 hasRelatedWork W2758063741 @default.
- W4313459214 hasRelatedWork W2807311372 @default.
- W4313459214 hasRelatedWork W2977314777 @default.
- W4313459214 hasRelatedWork W3016514588 @default.
- W4313459214 hasRelatedWork W3208883981 @default.
- W4313459214 hasRelatedWork W4200409985 @default.
- W4313459214 hasRelatedWork W4298167479 @default.
- W4313459214 hasRelatedWork W4307834408 @default.
- W4313459214 hasRelatedWork W4320925816 @default.
- W4313459214 isParatext "false" @default.
- W4313459214 isRetracted "false" @default.
- W4313459214 workType "article" @default.