Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313460000> ?p ?o ?g. }
- W4313460000 endingPage "113578" @default.
- W4313460000 startingPage "113578" @default.
- W4313460000 abstract "Renewable energy induced by wind and wave sources is playing an indispensable role in electricity production. The innovative hybrid renewable offshore platform concept, which combines Floating Offshore Wind Turbines (FOWTs) with Oscillating Water Columns (OWCs), has proven to be a promising solution to harvest clean energy. The hybrid platform can increase the total energy absorption, reduce the unwanted dynamic response of the platform, mitigate the load in critical situations, and improve the system's cost efficiency. However, the nonlinear dynamical behavior of the hybrid offshore wind system presents an opportunity for stabilization via challenging control applications. Wind and wave loads lead to stress on the FOWT tower structure, increasing the risk of damage and failure, and raising maintenance costs while lowering its performance and lifespan. Moreover, the dynamics of the tower and the platform are extremely sensitive to wind speed and wave elevation, which causes substantial destabilization in extreme conditions, particularly to the tower top displacement and the platform pitch angle. Therefore, this article focuses on two main novel targets: (i) regressive modeling of the hybrid aero-hydro-servo-elastic-mooring coupled numerical system and (ii) an ad-hoc fuzzy-based control implementation for the stabilization of the platform. In order to analyze the performance of the hybrid FOWT-OWCs, this article first employs computational Machine Learning (ML) techniques, i.e., Artificial Neural Networks (ANNs), to match the behavior of the detailed FOWT-OWCs numerical model. Then, a Fuzzy Logic Control (FLC) is developed and applied to establish a structural controller mitigating the undesired structural vibrations. Both modeling and control schemes are successfully implemented, showing a superior performance compared to the FOWT system without OWCs. Experimental results demonstrate that the proposed ANN-based modeling is a promising alternative to other intricate nonlinear NREL 5 MW FOWT dynamical models. Meanwhile, the proposed FLC improves the platform's dynamic behavior, increasing its stability under a wide range of wind and wave conditions." @default.
- W4313460000 created "2023-01-06" @default.
- W4313460000 creator A5006015300 @default.
- W4313460000 creator A5028217798 @default.
- W4313460000 creator A5032097807 @default.
- W4313460000 creator A5082133467 @default.
- W4313460000 creator A5090461867 @default.
- W4313460000 date "2023-02-01" @default.
- W4313460000 modified "2023-10-17" @default.
- W4313460000 title "Fuzzy logic control of an artificial neural network-based floating offshore wind turbine model integrated with four oscillating water columns" @default.
- W4313460000 cites W1173784407 @default.
- W4313460000 cites W1589063938 @default.
- W4313460000 cites W1978646539 @default.
- W4313460000 cites W2004492449 @default.
- W4313460000 cites W2030965383 @default.
- W4313460000 cites W2050830471 @default.
- W4313460000 cites W2054064455 @default.
- W4313460000 cites W2064732663 @default.
- W4313460000 cites W2071942969 @default.
- W4313460000 cites W2086291778 @default.
- W4313460000 cites W2103976587 @default.
- W4313460000 cites W2154987621 @default.
- W4313460000 cites W2156250920 @default.
- W4313460000 cites W2159010568 @default.
- W4313460000 cites W2170237178 @default.
- W4313460000 cites W2175389419 @default.
- W4313460000 cites W2202241842 @default.
- W4313460000 cites W2280029926 @default.
- W4313460000 cites W2566003805 @default.
- W4313460000 cites W2742998476 @default.
- W4313460000 cites W2768291778 @default.
- W4313460000 cites W2779159842 @default.
- W4313460000 cites W2883615338 @default.
- W4313460000 cites W2912180295 @default.
- W4313460000 cites W2914133363 @default.
- W4313460000 cites W2967618336 @default.
- W4313460000 cites W2972473099 @default.
- W4313460000 cites W3086633123 @default.
- W4313460000 cites W3110995349 @default.
- W4313460000 cites W3119742635 @default.
- W4313460000 cites W3121089996 @default.
- W4313460000 cites W3131691547 @default.
- W4313460000 cites W3132356804 @default.
- W4313460000 cites W3168475766 @default.
- W4313460000 cites W3171510737 @default.
- W4313460000 cites W3185028429 @default.
- W4313460000 cites W3201034007 @default.
- W4313460000 cites W3201685616 @default.
- W4313460000 cites W3214114067 @default.
- W4313460000 cites W3215734418 @default.
- W4313460000 cites W4200197854 @default.
- W4313460000 cites W4214892038 @default.
- W4313460000 cites W4225127312 @default.
- W4313460000 cites W4283257981 @default.
- W4313460000 cites W4283764747 @default.
- W4313460000 cites W4284962518 @default.
- W4313460000 cites W4289780019 @default.
- W4313460000 doi "https://doi.org/10.1016/j.oceaneng.2022.113578" @default.
- W4313460000 hasPublicationYear "2023" @default.
- W4313460000 type Work @default.
- W4313460000 citedByCount "9" @default.
- W4313460000 countsByYear W43134600002023 @default.
- W4313460000 crossrefType "journal-article" @default.
- W4313460000 hasAuthorship W4313460000A5006015300 @default.
- W4313460000 hasAuthorship W4313460000A5028217798 @default.
- W4313460000 hasAuthorship W4313460000A5032097807 @default.
- W4313460000 hasAuthorship W4313460000A5082133467 @default.
- W4313460000 hasAuthorship W4313460000A5090461867 @default.
- W4313460000 hasBestOaLocation W43134600001 @default.
- W4313460000 hasConcept C119599485 @default.
- W4313460000 hasConcept C127413603 @default.
- W4313460000 hasConcept C154945302 @default.
- W4313460000 hasConcept C188573790 @default.
- W4313460000 hasConcept C199104240 @default.
- W4313460000 hasConcept C203479927 @default.
- W4313460000 hasConcept C2777831296 @default.
- W4313460000 hasConcept C2778449969 @default.
- W4313460000 hasConcept C41008148 @default.
- W4313460000 hasConcept C50644808 @default.
- W4313460000 hasConcept C6557445 @default.
- W4313460000 hasConcept C66938386 @default.
- W4313460000 hasConcept C78519656 @default.
- W4313460000 hasConcept C86803240 @default.
- W4313460000 hasConcept C8735168 @default.
- W4313460000 hasConceptScore W4313460000C119599485 @default.
- W4313460000 hasConceptScore W4313460000C127413603 @default.
- W4313460000 hasConceptScore W4313460000C154945302 @default.
- W4313460000 hasConceptScore W4313460000C188573790 @default.
- W4313460000 hasConceptScore W4313460000C199104240 @default.
- W4313460000 hasConceptScore W4313460000C203479927 @default.
- W4313460000 hasConceptScore W4313460000C2777831296 @default.
- W4313460000 hasConceptScore W4313460000C2778449969 @default.
- W4313460000 hasConceptScore W4313460000C41008148 @default.
- W4313460000 hasConceptScore W4313460000C50644808 @default.
- W4313460000 hasConceptScore W4313460000C6557445 @default.
- W4313460000 hasConceptScore W4313460000C66938386 @default.
- W4313460000 hasConceptScore W4313460000C78519656 @default.
- W4313460000 hasConceptScore W4313460000C86803240 @default.