Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313460059> ?p ?o ?g. }
- W4313460059 endingPage "113563" @default.
- W4313460059 startingPage "113563" @default.
- W4313460059 abstract "A data-driven Bayesian network model (BN) is used to analyse the relationship between the severity of marine accidents and relevant Accident Influential Factors (AIFs). Firstly, based on the marine accident investigation reports involving 1,294 ships from 2000 to 2019, the severity grades of marine accidents are classified, and a database of factors affecting the severity of marine accidents is established. Secondly, a Tree Augmented Naive Bayesian algorithm (TAN) is used to establish a data-driven BN model, and the established database of AIFs is analysed by data training and machine learning to reveal the influence of related factors on the severity of the accident and the mechanism of action. Finally, the sensitivity analysis and verification of the model are conducted. Through the analysis of the Most Probable Explanation (MPE), it explains the possible configurations in different scenarios and identifies the related potential risks. This study finds that “accident type”, “engine power”, “gross tonnage”, “ship type” and “location” are the five most important AIFs of three accident severity grades. “Capsizing/sinking”, “hull/machinery damage” and “collision” that are most likely to lead to “very serious accidents”. Further, the possibility of fishing boats or other small ships leading to “very serious accidents” is also higher than that of other types of ships. The results of this study can help to analyse and predict marine accidents and ensure the safe navigation of ships and hence benefit such maritime stakeholders as safety authorities and ship owners." @default.
- W4313460059 created "2023-01-06" @default.
- W4313460059 creator A5008658957 @default.
- W4313460059 creator A5024492200 @default.
- W4313460059 creator A5038058760 @default.
- W4313460059 creator A5048900384 @default.
- W4313460059 creator A5054998656 @default.
- W4313460059 creator A5056988611 @default.
- W4313460059 creator A5065074469 @default.
- W4313460059 creator A5081734561 @default.
- W4313460059 creator A5088579309 @default.
- W4313460059 date "2023-02-01" @default.
- W4313460059 modified "2023-10-17" @default.
- W4313460059 title "Analysis of factors affecting the severity of marine accidents using a data-driven Bayesian network" @default.
- W4313460059 cites W1817561967 @default.
- W4313460059 cites W1986140147 @default.
- W4313460059 cites W2016686020 @default.
- W4313460059 cites W2018571157 @default.
- W4313460059 cites W2032910161 @default.
- W4313460059 cites W2038780669 @default.
- W4313460059 cites W2045759663 @default.
- W4313460059 cites W2047670338 @default.
- W4313460059 cites W2068855606 @default.
- W4313460059 cites W2092809341 @default.
- W4313460059 cites W2130641694 @default.
- W4313460059 cites W2305402217 @default.
- W4313460059 cites W2512403973 @default.
- W4313460059 cites W2589601837 @default.
- W4313460059 cites W2604728221 @default.
- W4313460059 cites W2755852933 @default.
- W4313460059 cites W2793918899 @default.
- W4313460059 cites W2800077253 @default.
- W4313460059 cites W2801726981 @default.
- W4313460059 cites W2884323833 @default.
- W4313460059 cites W2886828755 @default.
- W4313460059 cites W2898367526 @default.
- W4313460059 cites W2901034518 @default.
- W4313460059 cites W2964426793 @default.
- W4313460059 cites W2972466068 @default.
- W4313460059 cites W2977243132 @default.
- W4313460059 cites W2977943318 @default.
- W4313460059 cites W2989053221 @default.
- W4313460059 cites W3007953678 @default.
- W4313460059 cites W3009012390 @default.
- W4313460059 cites W3015042684 @default.
- W4313460059 cites W3033152499 @default.
- W4313460059 cites W3034912846 @default.
- W4313460059 cites W3035123951 @default.
- W4313460059 cites W3035709542 @default.
- W4313460059 cites W3037061274 @default.
- W4313460059 cites W3085620177 @default.
- W4313460059 cites W3093295287 @default.
- W4313460059 cites W3097362752 @default.
- W4313460059 cites W3115100661 @default.
- W4313460059 cites W3119184615 @default.
- W4313460059 cites W3125883306 @default.
- W4313460059 cites W3127135831 @default.
- W4313460059 cites W3152833670 @default.
- W4313460059 cites W3161278574 @default.
- W4313460059 cites W3162095218 @default.
- W4313460059 cites W3184358634 @default.
- W4313460059 cites W3194880107 @default.
- W4313460059 cites W3196324424 @default.
- W4313460059 cites W3199614175 @default.
- W4313460059 cites W3201400835 @default.
- W4313460059 cites W3202465950 @default.
- W4313460059 cites W3203732159 @default.
- W4313460059 cites W4200279921 @default.
- W4313460059 cites W4205266139 @default.
- W4313460059 cites W4205531248 @default.
- W4313460059 cites W4206463712 @default.
- W4313460059 cites W4210464676 @default.
- W4313460059 cites W4280491906 @default.
- W4313460059 cites W4283766578 @default.
- W4313460059 cites W4292394991 @default.
- W4313460059 cites W4296285577 @default.
- W4313460059 cites W4297963656 @default.
- W4313460059 cites W4306753892 @default.
- W4313460059 cites W4308307569 @default.
- W4313460059 cites W4309265048 @default.
- W4313460059 cites W4309631327 @default.
- W4313460059 cites W637200496 @default.
- W4313460059 doi "https://doi.org/10.1016/j.oceaneng.2022.113563" @default.
- W4313460059 hasPublicationYear "2023" @default.
- W4313460059 type Work @default.
- W4313460059 citedByCount "8" @default.
- W4313460059 countsByYear W43134600592023 @default.
- W4313460059 crossrefType "journal-article" @default.
- W4313460059 hasAuthorship W4313460059A5008658957 @default.
- W4313460059 hasAuthorship W4313460059A5024492200 @default.
- W4313460059 hasAuthorship W4313460059A5038058760 @default.
- W4313460059 hasAuthorship W4313460059A5048900384 @default.
- W4313460059 hasAuthorship W4313460059A5054998656 @default.
- W4313460059 hasAuthorship W4313460059A5056988611 @default.
- W4313460059 hasAuthorship W4313460059A5065074469 @default.
- W4313460059 hasAuthorship W4313460059A5081734561 @default.
- W4313460059 hasAuthorship W4313460059A5088579309 @default.
- W4313460059 hasConcept C111368507 @default.