Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313461065> ?p ?o ?g. }
- W4313461065 endingPage "e0278562" @default.
- W4313461065 startingPage "e0278562" @default.
- W4313461065 abstract "Background Minor head trauma in children is a common reason for emergency department visits, but the risk of traumatic brain injury (TBI) in those children is very low. Therefore, physicians should consider the indication for computed tomography (CT) to avoid unnecessary radiation exposure to children. The purpose of this study was to statistically assess the differences between control and mild TBI (mTBI). In addition, we also investigate the feasibility of machine learning (ML) to predict the necessity of CT scans in children with mTBI. Methods and findings The study enrolled 1100 children under the age of 2 years to assess pre-verbal children. Other inclusion and exclusion criteria were per the PECARN study. Data such as demographics, injury details, medical history, and neurological assessment were used for statistical evaluation and creation of the ML algorithm. The number of children with clinically important TBI (ciTBI), mTBI on CT, and controls was 28, 30, and 1042, respectively. Statistical significance between the control group and clinically significant TBI requiring hospitalization (csTBI: ciTBI+mTBI on CT) was demonstrated for all nonparametric predictors except severity of the injury mechanism. The comparison between the three groups also showed significance for all predictors (p<0.05). This study showed that supervised ML for predicting the need for CT scan can be generated with 95% accuracy. It also revealed the significance of each predictor in the decision tree, especially the days of life. Conclusions These results confirm the role and importance of each of the predictors mentioned in the PECARN study and show that ML could discriminate between children with csTBI and the control group." @default.
- W4313461065 created "2023-01-06" @default.
- W4313461065 creator A5023371050 @default.
- W4313461065 creator A5050108207 @default.
- W4313461065 creator A5052909927 @default.
- W4313461065 creator A5084459412 @default.
- W4313461065 creator A5087609043 @default.
- W4313461065 date "2023-01-03" @default.
- W4313461065 modified "2023-10-01" @default.
- W4313461065 title "Statistical and machine learning approaches to predict the necessity for computed tomography in children with mild traumatic brain injury" @default.
- W4313461065 cites W1789318226 @default.
- W4313461065 cites W1968312145 @default.
- W4313461065 cites W1993086960 @default.
- W4313461065 cites W2011810280 @default.
- W4313461065 cites W2024561431 @default.
- W4313461065 cites W2026332752 @default.
- W4313461065 cites W2044499611 @default.
- W4313461065 cites W2055672083 @default.
- W4313461065 cites W2067524565 @default.
- W4313461065 cites W2076497858 @default.
- W4313461065 cites W2081481675 @default.
- W4313461065 cites W2084236584 @default.
- W4313461065 cites W2124704085 @default.
- W4313461065 cites W2131389518 @default.
- W4313461065 cites W2133967314 @default.
- W4313461065 cites W2135103637 @default.
- W4313461065 cites W2138025351 @default.
- W4313461065 cites W2143369990 @default.
- W4313461065 cites W2147488174 @default.
- W4313461065 cites W2150055445 @default.
- W4313461065 cites W2151266040 @default.
- W4313461065 cites W2154059649 @default.
- W4313461065 cites W2159610730 @default.
- W4313461065 cites W2171697262 @default.
- W4313461065 cites W2537929880 @default.
- W4313461065 cites W2554548383 @default.
- W4313461065 cites W2587897557 @default.
- W4313461065 cites W2600022899 @default.
- W4313461065 cites W2606543612 @default.
- W4313461065 cites W2612275753 @default.
- W4313461065 cites W2763556273 @default.
- W4313461065 cites W2768899399 @default.
- W4313461065 cites W2776693574 @default.
- W4313461065 cites W2804079537 @default.
- W4313461065 cites W2805055006 @default.
- W4313461065 cites W2890806027 @default.
- W4313461065 cites W2894111897 @default.
- W4313461065 cites W2937888061 @default.
- W4313461065 cites W2946492194 @default.
- W4313461065 cites W2951074924 @default.
- W4313461065 cites W2966977115 @default.
- W4313461065 cites W2972609356 @default.
- W4313461065 cites W2982556551 @default.
- W4313461065 cites W2989844482 @default.
- W4313461065 cites W2991225622 @default.
- W4313461065 cites W2997533263 @default.
- W4313461065 cites W3021197637 @default.
- W4313461065 cites W3025870037 @default.
- W4313461065 cites W3094146876 @default.
- W4313461065 cites W3111877360 @default.
- W4313461065 cites W3134160156 @default.
- W4313461065 cites W3171403271 @default.
- W4313461065 doi "https://doi.org/10.1371/journal.pone.0278562" @default.
- W4313461065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36595496" @default.
- W4313461065 hasPublicationYear "2023" @default.
- W4313461065 type Work @default.
- W4313461065 citedByCount "2" @default.
- W4313461065 countsByYear W43134610652023 @default.
- W4313461065 crossrefType "journal-article" @default.
- W4313461065 hasAuthorship W4313461065A5023371050 @default.
- W4313461065 hasAuthorship W4313461065A5050108207 @default.
- W4313461065 hasAuthorship W4313461065A5052909927 @default.
- W4313461065 hasAuthorship W4313461065A5084459412 @default.
- W4313461065 hasAuthorship W4313461065A5087609043 @default.
- W4313461065 hasBestOaLocation W43134610651 @default.
- W4313461065 hasConcept C118552586 @default.
- W4313461065 hasConcept C126322002 @default.
- W4313461065 hasConcept C126838900 @default.
- W4313461065 hasConcept C144024400 @default.
- W4313461065 hasConcept C149923435 @default.
- W4313461065 hasConcept C187212893 @default.
- W4313461065 hasConcept C190385971 @default.
- W4313461065 hasConcept C194828623 @default.
- W4313461065 hasConcept C2780084366 @default.
- W4313461065 hasConcept C2780724011 @default.
- W4313461065 hasConcept C2781017439 @default.
- W4313461065 hasConcept C3017944768 @default.
- W4313461065 hasConcept C544519230 @default.
- W4313461065 hasConcept C65409693 @default.
- W4313461065 hasConcept C71924100 @default.
- W4313461065 hasConceptScore W4313461065C118552586 @default.
- W4313461065 hasConceptScore W4313461065C126322002 @default.
- W4313461065 hasConceptScore W4313461065C126838900 @default.
- W4313461065 hasConceptScore W4313461065C144024400 @default.
- W4313461065 hasConceptScore W4313461065C149923435 @default.
- W4313461065 hasConceptScore W4313461065C187212893 @default.
- W4313461065 hasConceptScore W4313461065C190385971 @default.
- W4313461065 hasConceptScore W4313461065C194828623 @default.