Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313461208> ?p ?o ?g. }
- W4313461208 endingPage "106512" @default.
- W4313461208 startingPage "106512" @default.
- W4313461208 abstract "Renewable energy resources (RES) pose several challenges due to their natural intermittency when integrated into a distribution network. A smart energy storage system (SESS) alleviates these challenges, which is achieved by integrating thermostatically controlled loads (TCLs) such as air conditioners (ACs). Hence, this study proposes a virtual energy storage system (VESS) by modeling the ACs analogous to an electro-chemical battery. Besides, non-linearity in energy consumption patterns of ACs due to consumer behavior makes predictive energy analysis critical to deplete the discrepancy between supply and demand. Therefore, this study proposes an ensemble learning (EL) technique to predict the virtual energy storage (VES) capacity of ACs. The prediction stage relies on various machine learning (ML) methods, like support vector regression (SVR) and artificial neural network (ANN). Based on these ML techniques, this study proposes an SVRs-ANN-based EL model to predict the VES capacity during the discharging cycle. Each weak learner in the EL model is trained using a significant features subset with the aid of the k-fold cross-validation method to build a more generalized model for unseen data. The performance of the EL model is estimated using minute-based smart meter data set and empirically manifested that the EL model outperforms conventional approaches. The R2 and root mean squared error (RMSE) of the EL model reach 1 and 1.03×10−7, respectively, and results demonstrate lower RMSE values and higher performance than conventional methods. The results obtained have shown the robustness of the proposed EL model to operate ACs in energy-saving mode instead of load shifting. Although ACs are not controlled in the experiments, the experimental validation proved that the EL model accurately predicts the daily VES capacity of ACs without violating consumer satisfaction." @default.
- W4313461208 created "2023-01-06" @default.
- W4313461208 creator A5011207875 @default.
- W4313461208 creator A5041509078 @default.
- W4313461208 creator A5060260010 @default.
- W4313461208 date "2023-03-01" @default.
- W4313461208 modified "2023-09-27" @default.
- W4313461208 title "An ensemble learning model for estimating the virtual energy storage capacity of aggregated air-conditioners" @default.
- W4313461208 cites W1967831571 @default.
- W4313461208 cites W2327685928 @default.
- W4313461208 cites W2586259521 @default.
- W4313461208 cites W2592637384 @default.
- W4313461208 cites W2604099671 @default.
- W4313461208 cites W2703741076 @default.
- W4313461208 cites W2731240179 @default.
- W4313461208 cites W2766636687 @default.
- W4313461208 cites W2781966338 @default.
- W4313461208 cites W2797106044 @default.
- W4313461208 cites W2803129276 @default.
- W4313461208 cites W2888945543 @default.
- W4313461208 cites W2897723454 @default.
- W4313461208 cites W2930922598 @default.
- W4313461208 cites W2954884550 @default.
- W4313461208 cites W2955229286 @default.
- W4313461208 cites W2955771503 @default.
- W4313461208 cites W2974766725 @default.
- W4313461208 cites W2975836901 @default.
- W4313461208 cites W3000578806 @default.
- W4313461208 cites W3001995063 @default.
- W4313461208 cites W3002730961 @default.
- W4313461208 cites W3010449411 @default.
- W4313461208 cites W3015761931 @default.
- W4313461208 cites W3033581805 @default.
- W4313461208 cites W3034272367 @default.
- W4313461208 cites W3045300245 @default.
- W4313461208 cites W3100428034 @default.
- W4313461208 cites W3107372959 @default.
- W4313461208 cites W3129762955 @default.
- W4313461208 cites W3132026260 @default.
- W4313461208 cites W3162668816 @default.
- W4313461208 cites W3169686075 @default.
- W4313461208 cites W3182838061 @default.
- W4313461208 cites W3195895028 @default.
- W4313461208 cites W4214940347 @default.
- W4313461208 cites W4296432792 @default.
- W4313461208 doi "https://doi.org/10.1016/j.est.2022.106512" @default.
- W4313461208 hasPublicationYear "2023" @default.
- W4313461208 type Work @default.
- W4313461208 citedByCount "1" @default.
- W4313461208 countsByYear W43134612082023 @default.
- W4313461208 crossrefType "journal-article" @default.
- W4313461208 hasAuthorship W4313461208A5011207875 @default.
- W4313461208 hasAuthorship W4313461208A5041509078 @default.
- W4313461208 hasAuthorship W4313461208A5060260010 @default.
- W4313461208 hasConcept C103742991 @default.
- W4313461208 hasConcept C104317684 @default.
- W4313461208 hasConcept C10558101 @default.
- W4313461208 hasConcept C105795698 @default.
- W4313461208 hasConcept C119599485 @default.
- W4313461208 hasConcept C119857082 @default.
- W4313461208 hasConcept C119898033 @default.
- W4313461208 hasConcept C121332964 @default.
- W4313461208 hasConcept C12267149 @default.
- W4313461208 hasConcept C124101348 @default.
- W4313461208 hasConcept C127413603 @default.
- W4313461208 hasConcept C139945424 @default.
- W4313461208 hasConcept C154945302 @default.
- W4313461208 hasConcept C163258240 @default.
- W4313461208 hasConcept C185592680 @default.
- W4313461208 hasConcept C196558001 @default.
- W4313461208 hasConcept C2779510800 @default.
- W4313461208 hasConcept C2780165032 @default.
- W4313461208 hasConcept C2780388094 @default.
- W4313461208 hasConcept C33923547 @default.
- W4313461208 hasConcept C41008148 @default.
- W4313461208 hasConcept C45942800 @default.
- W4313461208 hasConcept C50644808 @default.
- W4313461208 hasConcept C55493867 @default.
- W4313461208 hasConcept C62520636 @default.
- W4313461208 hasConcept C63479239 @default.
- W4313461208 hasConcept C73916439 @default.
- W4313461208 hasConcept C78519656 @default.
- W4313461208 hasConcept C97355855 @default.
- W4313461208 hasConceptScore W4313461208C103742991 @default.
- W4313461208 hasConceptScore W4313461208C104317684 @default.
- W4313461208 hasConceptScore W4313461208C10558101 @default.
- W4313461208 hasConceptScore W4313461208C105795698 @default.
- W4313461208 hasConceptScore W4313461208C119599485 @default.
- W4313461208 hasConceptScore W4313461208C119857082 @default.
- W4313461208 hasConceptScore W4313461208C119898033 @default.
- W4313461208 hasConceptScore W4313461208C121332964 @default.
- W4313461208 hasConceptScore W4313461208C12267149 @default.
- W4313461208 hasConceptScore W4313461208C124101348 @default.
- W4313461208 hasConceptScore W4313461208C127413603 @default.
- W4313461208 hasConceptScore W4313461208C139945424 @default.
- W4313461208 hasConceptScore W4313461208C154945302 @default.
- W4313461208 hasConceptScore W4313461208C163258240 @default.
- W4313461208 hasConceptScore W4313461208C185592680 @default.