Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313461286> ?p ?o ?g. }
- W4313461286 abstract "Saltmarshes in coastal wetlands provide important ecosystem services. Satellite remote sensing has been widely used for mapping and classification of saltmarsh vegetation, however, medium-spatial-resolution satellite datasets such as Landsat-series imagery may induce mixed pixel problems over saltmarsh landscapes which are spatially heterogeneous. Sub-pixel fractional cover estimation of saltmarsh vegetation at species level are required to better understand the distribution and canopy structure of saltmarsh vegetation. In this study, we presented an approach framework for estimating and mapping the fractional cover of major saltmarsh species in the Yellow River Delta, China based on time series Landsat 8 Operational Land Imager data. To solve the problem that the coastal area is frequently covered by clouds, we adopted the recently developed virtual image-based cloud removal (VICR) algorithm to reconstruct missing image values under the cloud/cloud shadows over the time series Landsat imagery. Then, we developed an ensemble learning model (ELM), which incorporates Random Forest Regression (RFR), K-Nearest Neighbor Regression (KNNR) and Gradient Boosted Regression Tree (GBRT) based on temporal-spectral features derived from the time-series cloudless images to estimate the fractional cover of major vegetation types, i.e., Phragmites australis , Suaeda salsa and the invasive species, Spartina alterniflora . High spatial resolution imagery acquired by the Unmanned Aerial Vehicle and Gaofen-6 satellites were used for reference sample collections. The results showed that our approach successfully estimated the fractional cover of each saltmarsh species (average of R-square:0.891, RMSE: 7.48%). Through four scenarios of experiments, we found that the ELM is advantageous over each individual model. When the images during key months were absent, cloud removal for the Landsat images considerably improved the estimation accuracies. In the study area, Spartina alterniflora covers the largest area (5753.97 ha), followed by Phragmites australis with spatial extent area of 4208.4 ha and Suaeda salsa of 1984.41 ha. The average fractional cover of S. alterniflora was 58.45%, that of P. australis was 51.64% and that of S.salsa was 51.64%." @default.
- W4313461286 created "2023-01-06" @default.
- W4313461286 creator A5001293486 @default.
- W4313461286 creator A5011021284 @default.
- W4313461286 creator A5045153029 @default.
- W4313461286 creator A5065896044 @default.
- W4313461286 creator A5067439969 @default.
- W4313461286 creator A5068289165 @default.
- W4313461286 creator A5069917113 @default.
- W4313461286 creator A5087888313 @default.
- W4313461286 creator A5089180563 @default.
- W4313461286 date "2022-12-21" @default.
- W4313461286 modified "2023-09-26" @default.
- W4313461286 title "Estimating fractional cover of saltmarsh vegetation species in coastal wetlands in the Yellow River Delta, China using ensemble learning model" @default.
- W4313461286 cites W1964217023 @default.
- W4313461286 cites W1968718753 @default.
- W4313461286 cites W1978145340 @default.
- W4313461286 cites W1998842586 @default.
- W4313461286 cites W2051786676 @default.
- W4313461286 cites W2056805770 @default.
- W4313461286 cites W2058723831 @default.
- W4313461286 cites W2063623478 @default.
- W4313461286 cites W2080210566 @default.
- W4313461286 cites W2095795470 @default.
- W4313461286 cites W2101678239 @default.
- W4313461286 cites W2113410727 @default.
- W4313461286 cites W2125325727 @default.
- W4313461286 cites W2149676023 @default.
- W4313461286 cites W2285717070 @default.
- W4313461286 cites W2528677926 @default.
- W4313461286 cites W2560693592 @default.
- W4313461286 cites W2765127940 @default.
- W4313461286 cites W2809747573 @default.
- W4313461286 cites W2810043947 @default.
- W4313461286 cites W2903512164 @default.
- W4313461286 cites W2954586028 @default.
- W4313461286 cites W2964799253 @default.
- W4313461286 cites W2968460417 @default.
- W4313461286 cites W2995363336 @default.
- W4313461286 cites W2998298896 @default.
- W4313461286 cites W2998698924 @default.
- W4313461286 cites W3005790354 @default.
- W4313461286 cites W3007407753 @default.
- W4313461286 cites W3014154233 @default.
- W4313461286 cites W3035803064 @default.
- W4313461286 cites W3038052368 @default.
- W4313461286 cites W3046091284 @default.
- W4313461286 cites W3047144932 @default.
- W4313461286 cites W3072681182 @default.
- W4313461286 cites W3092644210 @default.
- W4313461286 cites W3121432989 @default.
- W4313461286 cites W3153649713 @default.
- W4313461286 cites W3189605123 @default.
- W4313461286 cites W3193406951 @default.
- W4313461286 cites W3193957590 @default.
- W4313461286 cites W3196671101 @default.
- W4313461286 cites W3208204550 @default.
- W4313461286 cites W3211044849 @default.
- W4313461286 cites W3216977698 @default.
- W4313461286 cites W4283030270 @default.
- W4313461286 cites W4289012740 @default.
- W4313461286 cites W4297991828 @default.
- W4313461286 doi "https://doi.org/10.3389/fmars.2022.1077907" @default.
- W4313461286 hasPublicationYear "2022" @default.
- W4313461286 type Work @default.
- W4313461286 citedByCount "0" @default.
- W4313461286 crossrefType "journal-article" @default.
- W4313461286 hasAuthorship W4313461286A5001293486 @default.
- W4313461286 hasAuthorship W4313461286A5011021284 @default.
- W4313461286 hasAuthorship W4313461286A5045153029 @default.
- W4313461286 hasAuthorship W4313461286A5065896044 @default.
- W4313461286 hasAuthorship W4313461286A5067439969 @default.
- W4313461286 hasAuthorship W4313461286A5068289165 @default.
- W4313461286 hasAuthorship W4313461286A5069917113 @default.
- W4313461286 hasAuthorship W4313461286A5087888313 @default.
- W4313461286 hasAuthorship W4313461286A5089180563 @default.
- W4313461286 hasBestOaLocation W43134612861 @default.
- W4313461286 hasConcept C100970517 @default.
- W4313461286 hasConcept C127413603 @default.
- W4313461286 hasConcept C135114317 @default.
- W4313461286 hasConcept C142724271 @default.
- W4313461286 hasConcept C146978453 @default.
- W4313461286 hasConcept C18903297 @default.
- W4313461286 hasConcept C205649164 @default.
- W4313461286 hasConcept C2776133958 @default.
- W4313461286 hasConcept C2778102629 @default.
- W4313461286 hasConcept C2779858377 @default.
- W4313461286 hasConcept C2780648208 @default.
- W4313461286 hasConcept C39432304 @default.
- W4313461286 hasConcept C4792198 @default.
- W4313461286 hasConcept C5072461 @default.
- W4313461286 hasConcept C62649853 @default.
- W4313461286 hasConcept C67268981 @default.
- W4313461286 hasConcept C67715294 @default.
- W4313461286 hasConcept C71924100 @default.
- W4313461286 hasConcept C86803240 @default.
- W4313461286 hasConceptScore W4313461286C100970517 @default.
- W4313461286 hasConceptScore W4313461286C127413603 @default.
- W4313461286 hasConceptScore W4313461286C135114317 @default.
- W4313461286 hasConceptScore W4313461286C142724271 @default.