Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313461621> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313461621 endingPage "P012" @default.
- W4313461621 startingPage "P012" @default.
- W4313461621 abstract "Abstract Genomic mutations progressively arise in our tissues, accumulating throughout life. The frequency and location of these mutations are influenced by lifestyle and genetic factors. When several mutations arise in cancer-driving genes, progressive phases of carcinogenesis may begin. Accurate cancer risk assessment in clinically normal appearing tissues (CNATs) allows time for preventative intervention to take place, lowering the overall treatment burden on patients. Therefore, it is essential for us to understand the correlation between mutation burden and cancer risk in CNATs. Ultradeep sequencing is required to study mutations in CNATs. However, ultradeep sequencing is currently only feasible in targeted genomic areas. It is well-known that mutation hotspots exist in a variety of cancer types. Our study aimed to assess whether mutation hotspots found in cancer are suitable for assessing cancer risk in CNAT. In our current work, we identified a high-quality mutation dataset from cancer and CNAT of the skin, bladder, and lung. The number of samples per CNAT dataset was 123, 555, and 515 in skin, bladder, and lung, respectively. We used our previously presented “hotSPOT” computational tool to identify the 10% of exome regions containing the most mutations in each cancer dataset. Each region found by our tool was labeled as a unique cancer mutation hotspot (CMH). We split the CNAT datasets into high and low-risk subsets based on history of sun exposure (skin), and history of cancer (bladder, lung). The distribution of mutations in CMH was compared in high and low-risk CNATs of each organ site. Finally, we tested the ability of mutations in CNATs located within CMHs to classify unlabeled samples based on risk. Each dataset was split 80%/20% into training and test datasets. The training datasets were fit to a neural network and the test datasets were used to measure the overall prediction accuracy. We identified 8 CMHs with significantly more mutations in high-risk skin compared to low-risk skin including CMHs in GRM3, SALL1, and TP53 (p < 0.05 - p < 0.01). In bladder, 29 CMHs captured significantly more mutations (p < 0.01 - p < 0.001) and 38 CMHs captured significantly less mutations (p < 0.01 - p < 0.001) in high-risk samples compared to low-risk. In our lung dataset, a single CMH in ZNF479 was found to capture significantly (p < 0.01) more mutations and 3 CMHs were found capture less mutations in high-risk samples compared to low-risk including areas of TP53 (p < 0.001, p < 0.05), and CST8 (p < 0.01). The neural network risk prediction models yielded an accuracy of 66.67%, 92.04%, and 66.99% in skin, bladder, and lung, respectively. Variability in mutation distribution of CNATs within CMHs and prediction model accuracy may be due to differences in dataset size and the number of relevant CMHs in each organ site. We found prominent differences in the mutation distribution of high and low-risk CNATs within CMHs of multiple organ sites. Our findings indicate that genomic tools could be developed to predict cancer risk in CNATs. Citation Format: Sydney R. Grant, Megan E. Fitzgerald, Spencer R. Rosario, Prashant K. Singh, Barbara A. Foster, Wendy J. Huss, Lei Wei, Gyorgy Paragh. Mutation hotspots in skin, bladder, and lung cancer as targets of carcinogenic risk assessment in clinically normal-appearing tissue. [abstract]. In: Proceedings of the AACR Special Conference: Precision Prevention, Early Detection, and Interception of Cancer; 2022 Nov 17-19; Austin, TX. Philadelphia (PA): AACR; Can Prev Res 2023;16(1 Suppl): Abstract nr P012." @default.
- W4313461621 created "2023-01-06" @default.
- W4313461621 creator A5001441690 @default.
- W4313461621 creator A5009152250 @default.
- W4313461621 creator A5034787932 @default.
- W4313461621 creator A5063636785 @default.
- W4313461621 creator A5067861660 @default.
- W4313461621 creator A5068207317 @default.
- W4313461621 creator A5076813961 @default.
- W4313461621 creator A5084842689 @default.
- W4313461621 date "2023-01-01" @default.
- W4313461621 modified "2023-09-30" @default.
- W4313461621 title "Abstract P012: Mutation hotspots in skin, bladder, and lung cancer as targets of carcinogenic risk assessment in clinically normal-appearing tissue" @default.
- W4313461621 doi "https://doi.org/10.1158/1940-6215.precprev22-p012" @default.
- W4313461621 hasPublicationYear "2023" @default.
- W4313461621 type Work @default.
- W4313461621 citedByCount "0" @default.
- W4313461621 crossrefType "journal-article" @default.
- W4313461621 hasAuthorship W4313461621A5001441690 @default.
- W4313461621 hasAuthorship W4313461621A5009152250 @default.
- W4313461621 hasAuthorship W4313461621A5034787932 @default.
- W4313461621 hasAuthorship W4313461621A5063636785 @default.
- W4313461621 hasAuthorship W4313461621A5067861660 @default.
- W4313461621 hasAuthorship W4313461621A5068207317 @default.
- W4313461621 hasAuthorship W4313461621A5076813961 @default.
- W4313461621 hasAuthorship W4313461621A5084842689 @default.
- W4313461621 hasConcept C104317684 @default.
- W4313461621 hasConcept C10590036 @default.
- W4313461621 hasConcept C121608353 @default.
- W4313461621 hasConcept C126322002 @default.
- W4313461621 hasConcept C143998085 @default.
- W4313461621 hasConcept C16671776 @default.
- W4313461621 hasConcept C2776256026 @default.
- W4313461621 hasConcept C2780352672 @default.
- W4313461621 hasConcept C501734568 @default.
- W4313461621 hasConcept C54355233 @default.
- W4313461621 hasConcept C555283112 @default.
- W4313461621 hasConcept C60644358 @default.
- W4313461621 hasConcept C71924100 @default.
- W4313461621 hasConcept C86803240 @default.
- W4313461621 hasConceptScore W4313461621C104317684 @default.
- W4313461621 hasConceptScore W4313461621C10590036 @default.
- W4313461621 hasConceptScore W4313461621C121608353 @default.
- W4313461621 hasConceptScore W4313461621C126322002 @default.
- W4313461621 hasConceptScore W4313461621C143998085 @default.
- W4313461621 hasConceptScore W4313461621C16671776 @default.
- W4313461621 hasConceptScore W4313461621C2776256026 @default.
- W4313461621 hasConceptScore W4313461621C2780352672 @default.
- W4313461621 hasConceptScore W4313461621C501734568 @default.
- W4313461621 hasConceptScore W4313461621C54355233 @default.
- W4313461621 hasConceptScore W4313461621C555283112 @default.
- W4313461621 hasConceptScore W4313461621C60644358 @default.
- W4313461621 hasConceptScore W4313461621C71924100 @default.
- W4313461621 hasConceptScore W4313461621C86803240 @default.
- W4313461621 hasIssue "1_Supplement" @default.
- W4313461621 hasLocation W43134616211 @default.
- W4313461621 hasOpenAccess W4313461621 @default.
- W4313461621 hasPrimaryLocation W43134616211 @default.
- W4313461621 hasRelatedWork W1839370049 @default.
- W4313461621 hasRelatedWork W2041831812 @default.
- W4313461621 hasRelatedWork W2106929137 @default.
- W4313461621 hasRelatedWork W2108932988 @default.
- W4313461621 hasRelatedWork W2117897636 @default.
- W4313461621 hasRelatedWork W2159173718 @default.
- W4313461621 hasRelatedWork W2464313322 @default.
- W4313461621 hasRelatedWork W2942487265 @default.
- W4313461621 hasRelatedWork W2977163651 @default.
- W4313461621 hasRelatedWork W3033608749 @default.
- W4313461621 hasVolume "16" @default.
- W4313461621 isParatext "false" @default.
- W4313461621 isRetracted "false" @default.
- W4313461621 workType "article" @default.