Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313461919> ?p ?o ?g. }
- W4313461919 abstract "<sec> <title>BACKGROUND</title> Assessing a patient’s suicide risk is challenging for health professionals because it depends on voluntary disclosure by the patient and often has limited resources. The application of novel machine learning approaches to determine suicide risk has clinical utility. </sec> <sec> <title>OBJECTIVE</title> This study aimed to investigate cross-sectional and longitudinal approaches to assess suicidality based on acoustic voice features of psychiatric patients using artificial intelligence. </sec> <sec> <title>METHODS</title> We collected 348 voice recordings during clinical interviews of 104 patients diagnosed with mood disorders at baseline and 2, 4, 8, and 12 months after recruitment. Suicidality was assessed using the Beck Scale for Suicidal Ideation and suicidal behavior using the Columbia Suicide Severity Rating Scale. The acoustic features of the voice, including temporal, formal, and spectral features, were extracted from the recordings. A between-person classification model that examines the vocal characteristics of individuals cross sectionally to detect individuals at high risk for suicide and a within-person classification model that detects considerable worsening of suicidality based on changes in acoustic features within an individual were developed and compared. Internal validation was performed using 10-fold cross validation of audio data from baseline to 2-month and external validation was performed using data from 2 to 4 months. </sec> <sec> <title>RESULTS</title> A combined set of 12 acoustic features and 3 demographic variables (age, sex, and past suicide attempts) were included in the single-layer artificial neural network for the between-person classification model. Furthermore, 13 acoustic features were included in the extreme gradient boosting machine learning algorithm for the within-person model. The between-person classifier was able to detect high suicidality with 69% accuracy (sensitivity 74%, specificity 62%, area under the receiver operating characteristic curve 0.62), whereas the within-person model was able to predict worsening suicidality over 2 months with 79% accuracy (sensitivity 68%, specificity 84%, area under receiver operating characteristic curve 0.67). The second model showed 62% accuracy in predicting increased suicidality in external sets. </sec> <sec> <title>CONCLUSIONS</title> Within-person analysis using changes in acoustic features within an individual is a promising approach to detect increased suicidality. Automated analysis of voice can be used to support the real-time assessment of suicide risk in primary care or telemedicine. </sec>" @default.
- W4313461919 created "2023-01-06" @default.
- W4313461919 creator A5005006564 @default.
- W4313461919 creator A5023173605 @default.
- W4313461919 creator A5024627962 @default.
- W4313461919 creator A5024918507 @default.
- W4313461919 creator A5039047791 @default.
- W4313461919 creator A5043033112 @default.
- W4313461919 creator A5043087703 @default.
- W4313461919 creator A5044323454 @default.
- W4313461919 creator A5066459183 @default.
- W4313461919 creator A5070835779 @default.
- W4313461919 creator A5077963222 @default.
- W4313461919 creator A5085403017 @default.
- W4313461919 date "2023-01-02" @default.
- W4313461919 modified "2023-09-30" @default.
- W4313461919 title "Acoustic Analysis of Speech for Screening for Suicide Risk: Machine Learning Classifiers for Between- and Within-Person Evaluation of Suicidality (Preprint)" @default.
- W4313461919 cites W1534820669 @default.
- W4313461919 cites W1990369310 @default.
- W4313461919 cites W1991661627 @default.
- W4313461919 cites W1994021761 @default.
- W4313461919 cites W2003502731 @default.
- W4313461919 cites W2010116357 @default.
- W4313461919 cites W2013684953 @default.
- W4313461919 cites W2033083342 @default.
- W4313461919 cites W2037901540 @default.
- W4313461919 cites W2045123881 @default.
- W4313461919 cites W2077999226 @default.
- W4313461919 cites W2084315798 @default.
- W4313461919 cites W2121014019 @default.
- W4313461919 cites W2132322340 @default.
- W4313461919 cites W2136347995 @default.
- W4313461919 cites W2141014056 @default.
- W4313461919 cites W2148083007 @default.
- W4313461919 cites W2148822124 @default.
- W4313461919 cites W2165988750 @default.
- W4313461919 cites W2168862366 @default.
- W4313461919 cites W2215977305 @default.
- W4313461919 cites W2217429244 @default.
- W4313461919 cites W2274753915 @default.
- W4313461919 cites W2306296749 @default.
- W4313461919 cites W2318386908 @default.
- W4313461919 cites W2498298636 @default.
- W4313461919 cites W2554980225 @default.
- W4313461919 cites W2613791459 @default.
- W4313461919 cites W2613960323 @default.
- W4313461919 cites W2625168316 @default.
- W4313461919 cites W2787842637 @default.
- W4313461919 cites W2800180206 @default.
- W4313461919 cites W2855659753 @default.
- W4313461919 cites W2921616123 @default.
- W4313461919 cites W2973024936 @default.
- W4313461919 cites W2979832118 @default.
- W4313461919 cites W3000211686 @default.
- W4313461919 cites W3004047823 @default.
- W4313461919 cites W3008796390 @default.
- W4313461919 cites W3012758580 @default.
- W4313461919 cites W3030864435 @default.
- W4313461919 cites W3032934243 @default.
- W4313461919 cites W3034909034 @default.
- W4313461919 cites W3126772981 @default.
- W4313461919 cites W3167611877 @default.
- W4313461919 cites W3181607054 @default.
- W4313461919 cites W3188688056 @default.
- W4313461919 cites W4205483807 @default.
- W4313461919 cites W4212831367 @default.
- W4313461919 cites W4237168912 @default.
- W4313461919 cites W4238079920 @default.
- W4313461919 cites W4240718682 @default.
- W4313461919 cites W4288886080 @default.
- W4313461919 cites W4295682739 @default.
- W4313461919 doi "https://doi.org/10.2196/preprints.45456" @default.
- W4313461919 hasPublicationYear "2023" @default.
- W4313461919 type Work @default.
- W4313461919 citedByCount "0" @default.
- W4313461919 crossrefType "posted-content" @default.
- W4313461919 hasAuthorship W4313461919A5005006564 @default.
- W4313461919 hasAuthorship W4313461919A5023173605 @default.
- W4313461919 hasAuthorship W4313461919A5024627962 @default.
- W4313461919 hasAuthorship W4313461919A5024918507 @default.
- W4313461919 hasAuthorship W4313461919A5039047791 @default.
- W4313461919 hasAuthorship W4313461919A5043033112 @default.
- W4313461919 hasAuthorship W4313461919A5043087703 @default.
- W4313461919 hasAuthorship W4313461919A5044323454 @default.
- W4313461919 hasAuthorship W4313461919A5066459183 @default.
- W4313461919 hasAuthorship W4313461919A5070835779 @default.
- W4313461919 hasAuthorship W4313461919A5077963222 @default.
- W4313461919 hasAuthorship W4313461919A5085403017 @default.
- W4313461919 hasBestOaLocation W43134619192 @default.
- W4313461919 hasConcept C138496976 @default.
- W4313461919 hasConcept C15744967 @default.
- W4313461919 hasConcept C2776641880 @default.
- W4313461919 hasConcept C2780733359 @default.
- W4313461919 hasConcept C2780842732 @default.
- W4313461919 hasConcept C3017944768 @default.
- W4313461919 hasConcept C526869908 @default.
- W4313461919 hasConcept C545542383 @default.
- W4313461919 hasConcept C70410870 @default.
- W4313461919 hasConcept C71924100 @default.
- W4313461919 hasConcept C83849319 @default.