Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313462293> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313462293 endingPage "108076" @default.
- W4313462293 startingPage "108076" @default.
- W4313462293 abstract "Nowadays, water, energy and food supplies are among the main problems faced by humanity. These issues are strongly linked and must be addressed by considering their interactions. The linkage is formulated as a nonlinear multiobjective optimization problem. Moreover, the solution can benefit from large databases that lead to the development of surrogate models. In this work, surrogate models are used to incorporate recorded input information. To avoid large-scale models, we use generative deep learning strategies to build low-order models. The surrogate models are coupled to the optimization problem to render optimal operation and structure of the nexus. The results show that the reduced model benefits the performance of the optimization problem. Furthermore, we implemented a clustering algorithm to reduce the number of solutions found by the multiobjective approach. The proposed methodology establishes a contribution for the integration of traditional optimization and deep learning tools to address the complex interactions of the water–energy–food nexus." @default.
- W4313462293 created "2023-01-06" @default.
- W4313462293 creator A5042749593 @default.
- W4313462293 creator A5043293185 @default.
- W4313462293 creator A5049750865 @default.
- W4313462293 date "2023-02-01" @default.
- W4313462293 modified "2023-10-02" @default.
- W4313462293 title "A combined variational encoding and optimization framework for design of the water–energy–food nexus" @default.
- W4313462293 cites W1826172662 @default.
- W4313462293 cites W1900744506 @default.
- W4313462293 cites W1975104650 @default.
- W4313462293 cites W1984104153 @default.
- W4313462293 cites W2000377397 @default.
- W4313462293 cites W2029149883 @default.
- W4313462293 cites W2052436060 @default.
- W4313462293 cites W2060400752 @default.
- W4313462293 cites W2119062108 @default.
- W4313462293 cites W2210160452 @default.
- W4313462293 cites W2591052934 @default.
- W4313462293 cites W2603766597 @default.
- W4313462293 cites W2625842246 @default.
- W4313462293 cites W2738275078 @default.
- W4313462293 cites W2770619212 @default.
- W4313462293 cites W2806613313 @default.
- W4313462293 cites W2884311300 @default.
- W4313462293 cites W2914728519 @default.
- W4313462293 cites W2962793481 @default.
- W4313462293 cites W2998395624 @default.
- W4313462293 cites W3092226929 @default.
- W4313462293 cites W3118964254 @default.
- W4313462293 cites W4303685838 @default.
- W4313462293 doi "https://doi.org/10.1016/j.compchemeng.2022.108076" @default.
- W4313462293 hasPublicationYear "2023" @default.
- W4313462293 type Work @default.
- W4313462293 citedByCount "2" @default.
- W4313462293 countsByYear W43134622932023 @default.
- W4313462293 crossrefType "journal-article" @default.
- W4313462293 hasAuthorship W4313462293A5042749593 @default.
- W4313462293 hasAuthorship W4313462293A5043293185 @default.
- W4313462293 hasAuthorship W4313462293A5049750865 @default.
- W4313462293 hasConcept C116019233 @default.
- W4313462293 hasConcept C119857082 @default.
- W4313462293 hasConcept C121332964 @default.
- W4313462293 hasConcept C125411270 @default.
- W4313462293 hasConcept C126255220 @default.
- W4313462293 hasConcept C131675550 @default.
- W4313462293 hasConcept C137836250 @default.
- W4313462293 hasConcept C148609458 @default.
- W4313462293 hasConcept C149635348 @default.
- W4313462293 hasConcept C154945302 @default.
- W4313462293 hasConcept C185592680 @default.
- W4313462293 hasConcept C2778755073 @default.
- W4313462293 hasConcept C33923547 @default.
- W4313462293 hasConcept C41008148 @default.
- W4313462293 hasConcept C55493867 @default.
- W4313462293 hasConcept C62520636 @default.
- W4313462293 hasConcept C68781425 @default.
- W4313462293 hasConceptScore W4313462293C116019233 @default.
- W4313462293 hasConceptScore W4313462293C119857082 @default.
- W4313462293 hasConceptScore W4313462293C121332964 @default.
- W4313462293 hasConceptScore W4313462293C125411270 @default.
- W4313462293 hasConceptScore W4313462293C126255220 @default.
- W4313462293 hasConceptScore W4313462293C131675550 @default.
- W4313462293 hasConceptScore W4313462293C137836250 @default.
- W4313462293 hasConceptScore W4313462293C148609458 @default.
- W4313462293 hasConceptScore W4313462293C149635348 @default.
- W4313462293 hasConceptScore W4313462293C154945302 @default.
- W4313462293 hasConceptScore W4313462293C185592680 @default.
- W4313462293 hasConceptScore W4313462293C2778755073 @default.
- W4313462293 hasConceptScore W4313462293C33923547 @default.
- W4313462293 hasConceptScore W4313462293C41008148 @default.
- W4313462293 hasConceptScore W4313462293C55493867 @default.
- W4313462293 hasConceptScore W4313462293C62520636 @default.
- W4313462293 hasConceptScore W4313462293C68781425 @default.
- W4313462293 hasFunder F4320321739 @default.
- W4313462293 hasLocation W43134622931 @default.
- W4313462293 hasOpenAccess W4313462293 @default.
- W4313462293 hasPrimaryLocation W43134622931 @default.
- W4313462293 hasRelatedWork W1967710068 @default.
- W4313462293 hasRelatedWork W1984849042 @default.
- W4313462293 hasRelatedWork W1989173004 @default.
- W4313462293 hasRelatedWork W1999564523 @default.
- W4313462293 hasRelatedWork W2561831133 @default.
- W4313462293 hasRelatedWork W3199712681 @default.
- W4313462293 hasRelatedWork W4205498112 @default.
- W4313462293 hasRelatedWork W4223481442 @default.
- W4313462293 hasRelatedWork W4302028360 @default.
- W4313462293 hasRelatedWork W988804915 @default.
- W4313462293 hasVolume "170" @default.
- W4313462293 isParatext "false" @default.
- W4313462293 isRetracted "false" @default.
- W4313462293 workType "article" @default.