Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313464567> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4313464567 endingPage "30" @default.
- W4313464567 startingPage "23" @default.
- W4313464567 abstract "The first basic boundary problem of the elasticity theory connected with the determination of the stress-strain state of the orthotropic half-plane under the planar deformation conditions has been considered. The stresses at the boundary y = 0 are known. The stresses tend to zero at infinity. It is necessary to determine the stress and displacement at any point of the half-plane. A brief overview of the scientific works which highlight the methods and approaches to solving the problems of the theory of elasticity, the strength as for the determination of stresses and deformations in orthotropic bodies, in particular plates, slabs, and beams is provided. The solution of the given boundary problem for the orthotropic half-plane is sought in the transformant space of the one-dimensional integral Fourier transformation. At the same time, all the main equations of the problem and the boundary conditions are subjected to direct one-dimensional integral Fourier transformation. The solution of the formulated planar problem is based on the construction of the Fourier transform of the stress function, which satisfies the corresponding analogue of the biharmonic differential equation in the transformant space for the case of an orthotropic material. The form of the transformant of the stress function depends on the values of the orthotropic material elastic constants, namely on the values of the roots of the characteristic equation obtained in the transformant space. One of three possible cases have been considered. The relations between the transformant of the stress function and the transformants of stresses and displacements are established. The transformants of the stress function are expressed in terms of four auxiliary functions, which are related to the loads on the surface of the half-plane. We find two auxiliary functions from the boundary condition ( y = 0 ). The infinity conditions make it possible to establish the connection between two found auxiliary functions and the other two functions. After substituting the found expressions into transformants of stresses and displacements and applying the inverse integral Fourier transformation, we obtain the true values of stresses and displacements at the points of the orthotropic half-plane. The solutions for the specific cases have been obtained and the numerical results have been analyzed. The obtained calculations demonstrate the adequacy of the results and the logic of using the chosen method for the solution of the given problem." @default.
- W4313464567 created "2023-01-06" @default.
- W4313464567 creator A5015722169 @default.
- W4313464567 creator A5024050664 @default.
- W4313464567 date "2022-01-01" @default.
- W4313464567 modified "2023-09-25" @default.
- W4313464567 title "RESEARCH OF THE STRESS-STRAIN STATE OF THE ORTHOTROPIC HALF-PLANE UNDER THE PLANAR DEFORMATION CONDITIONS" @default.
- W4313464567 doi "https://doi.org/10.26661/2413-6549-2022-1-03" @default.
- W4313464567 hasPublicationYear "2022" @default.
- W4313464567 type Work @default.
- W4313464567 citedByCount "0" @default.
- W4313464567 crossrefType "journal-article" @default.
- W4313464567 hasAuthorship W4313464567A5015722169 @default.
- W4313464567 hasAuthorship W4313464567A5024050664 @default.
- W4313464567 hasBestOaLocation W43134645671 @default.
- W4313464567 hasConcept C102519508 @default.
- W4313464567 hasConcept C121332964 @default.
- W4313464567 hasConcept C121854251 @default.
- W4313464567 hasConcept C131336679 @default.
- W4313464567 hasConcept C134306372 @default.
- W4313464567 hasConcept C135628077 @default.
- W4313464567 hasConcept C145784156 @default.
- W4313464567 hasConcept C159985019 @default.
- W4313464567 hasConcept C182310444 @default.
- W4313464567 hasConcept C192562407 @default.
- W4313464567 hasConcept C2524010 @default.
- W4313464567 hasConcept C2776983688 @default.
- W4313464567 hasConcept C29320194 @default.
- W4313464567 hasConcept C33923547 @default.
- W4313464567 hasConcept C97355855 @default.
- W4313464567 hasConceptScore W4313464567C102519508 @default.
- W4313464567 hasConceptScore W4313464567C121332964 @default.
- W4313464567 hasConceptScore W4313464567C121854251 @default.
- W4313464567 hasConceptScore W4313464567C131336679 @default.
- W4313464567 hasConceptScore W4313464567C134306372 @default.
- W4313464567 hasConceptScore W4313464567C135628077 @default.
- W4313464567 hasConceptScore W4313464567C145784156 @default.
- W4313464567 hasConceptScore W4313464567C159985019 @default.
- W4313464567 hasConceptScore W4313464567C182310444 @default.
- W4313464567 hasConceptScore W4313464567C192562407 @default.
- W4313464567 hasConceptScore W4313464567C2524010 @default.
- W4313464567 hasConceptScore W4313464567C2776983688 @default.
- W4313464567 hasConceptScore W4313464567C29320194 @default.
- W4313464567 hasConceptScore W4313464567C33923547 @default.
- W4313464567 hasConceptScore W4313464567C97355855 @default.
- W4313464567 hasIssue "1" @default.
- W4313464567 hasLocation W43134645671 @default.
- W4313464567 hasOpenAccess W4313464567 @default.
- W4313464567 hasPrimaryLocation W43134645671 @default.
- W4313464567 hasRelatedWork W1563673249 @default.
- W4313464567 hasRelatedWork W1982503564 @default.
- W4313464567 hasRelatedWork W2051986492 @default.
- W4313464567 hasRelatedWork W2804117584 @default.
- W4313464567 hasRelatedWork W3042021907 @default.
- W4313464567 hasRelatedWork W3133670176 @default.
- W4313464567 hasRelatedWork W3169320816 @default.
- W4313464567 hasRelatedWork W3171584407 @default.
- W4313464567 hasRelatedWork W4313464567 @default.
- W4313464567 hasRelatedWork W90717014 @default.
- W4313464567 isParatext "false" @default.
- W4313464567 isRetracted "false" @default.
- W4313464567 workType "article" @default.