Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313464568> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313464568 endingPage "242" @default.
- W4313464568 startingPage "231" @default.
- W4313464568 abstract "AbstractDeep learning algorithms automatically extract features from ECG signals, eliminating the manual feature extraction step. Deep learning approaches require extensive data to be trained, and access to an ECG database with a large variety of cardiac rhythms is limited. Transfer learning is a possible solution to improve the results of cardiac rhythms classification in a small database. This work proposes a open-access robust 1D-CNN model to be trained with a public database containing cardiac rhythms with their annotations. This study explores transfer learning in a small database to improve arrhythmia classification tasks. Overall, the 1D-CNN model trained without TL achieved an average accuracy of 91.73 % and F1-score 67.18 %; meanwhile, the 1D-CNN model with TL achieved an average accuracy of 94.40 % and F1-score of 79.72 %. The F1-score has an overall improvement of 12.54 % over the baseline model for rhythm classification. Moreover, this method significantly improved the F1-score precision and recall, making the model trained with transfer learning more relevant and reliable.KeywordsTransfer learningDeep learningECG classificationHeart rhythms" @default.
- W4313464568 created "2023-01-06" @default.
- W4313464568 creator A5011826531 @default.
- W4313464568 creator A5061329546 @default.
- W4313464568 creator A5083908676 @default.
- W4313464568 date "2022-01-01" @default.
- W4313464568 modified "2023-09-27" @default.
- W4313464568 title "Evaluation of Transfer Learning to Improve Arrhythmia Classification for a Small ECG Database" @default.
- W4313464568 cites W2091076299 @default.
- W4313464568 cites W2112287441 @default.
- W4313464568 cites W2162800060 @default.
- W4313464568 cites W2291961022 @default.
- W4313464568 cites W2771170013 @default.
- W4313464568 cites W2794550444 @default.
- W4313464568 cites W2794869652 @default.
- W4313464568 cites W2888491225 @default.
- W4313464568 cites W2891342985 @default.
- W4313464568 cites W2902644322 @default.
- W4313464568 cites W2963478701 @default.
- W4313464568 cites W2972744877 @default.
- W4313464568 cites W2979580092 @default.
- W4313464568 cites W2995168422 @default.
- W4313464568 cites W3000302224 @default.
- W4313464568 cites W3046996789 @default.
- W4313464568 cites W3048357462 @default.
- W4313464568 cites W3099085560 @default.
- W4313464568 cites W3119296006 @default.
- W4313464568 cites W3135891860 @default.
- W4313464568 cites W3185534265 @default.
- W4313464568 cites W3198130786 @default.
- W4313464568 cites W4206564475 @default.
- W4313464568 cites W4287010178 @default.
- W4313464568 doi "https://doi.org/10.1007/978-3-031-22419-5_20" @default.
- W4313464568 hasPublicationYear "2022" @default.
- W4313464568 type Work @default.
- W4313464568 citedByCount "0" @default.
- W4313464568 crossrefType "book-chapter" @default.
- W4313464568 hasAuthorship W4313464568A5011826531 @default.
- W4313464568 hasAuthorship W4313464568A5061329546 @default.
- W4313464568 hasAuthorship W4313464568A5083908676 @default.
- W4313464568 hasConcept C100660578 @default.
- W4313464568 hasConcept C108583219 @default.
- W4313464568 hasConcept C119857082 @default.
- W4313464568 hasConcept C126322002 @default.
- W4313464568 hasConcept C135343436 @default.
- W4313464568 hasConcept C138885662 @default.
- W4313464568 hasConcept C148524875 @default.
- W4313464568 hasConcept C150899416 @default.
- W4313464568 hasConcept C153180895 @default.
- W4313464568 hasConcept C154945302 @default.
- W4313464568 hasConcept C2779161974 @default.
- W4313464568 hasConcept C2988455589 @default.
- W4313464568 hasConcept C41008148 @default.
- W4313464568 hasConcept C41895202 @default.
- W4313464568 hasConcept C71924100 @default.
- W4313464568 hasConcept C77088390 @default.
- W4313464568 hasConceptScore W4313464568C100660578 @default.
- W4313464568 hasConceptScore W4313464568C108583219 @default.
- W4313464568 hasConceptScore W4313464568C119857082 @default.
- W4313464568 hasConceptScore W4313464568C126322002 @default.
- W4313464568 hasConceptScore W4313464568C135343436 @default.
- W4313464568 hasConceptScore W4313464568C138885662 @default.
- W4313464568 hasConceptScore W4313464568C148524875 @default.
- W4313464568 hasConceptScore W4313464568C150899416 @default.
- W4313464568 hasConceptScore W4313464568C153180895 @default.
- W4313464568 hasConceptScore W4313464568C154945302 @default.
- W4313464568 hasConceptScore W4313464568C2779161974 @default.
- W4313464568 hasConceptScore W4313464568C2988455589 @default.
- W4313464568 hasConceptScore W4313464568C41008148 @default.
- W4313464568 hasConceptScore W4313464568C41895202 @default.
- W4313464568 hasConceptScore W4313464568C71924100 @default.
- W4313464568 hasConceptScore W4313464568C77088390 @default.
- W4313464568 hasLocation W43134645681 @default.
- W4313464568 hasOpenAccess W4313464568 @default.
- W4313464568 hasPrimaryLocation W43134645681 @default.
- W4313464568 hasRelatedWork W2960456850 @default.
- W4313464568 hasRelatedWork W3031818154 @default.
- W4313464568 hasRelatedWork W3133293092 @default.
- W4313464568 hasRelatedWork W3166467183 @default.
- W4313464568 hasRelatedWork W4213299466 @default.
- W4313464568 hasRelatedWork W4281382123 @default.
- W4313464568 hasRelatedWork W4312200629 @default.
- W4313464568 hasRelatedWork W4312685930 @default.
- W4313464568 hasRelatedWork W4318834068 @default.
- W4313464568 hasRelatedWork W4318957922 @default.
- W4313464568 isParatext "false" @default.
- W4313464568 isRetracted "false" @default.
- W4313464568 workType "book-chapter" @default.