Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313465506> ?p ?o ?g. }
- W4313465506 abstract "Endoscopic disease activity monitoring is important for the long-term management of patients with ulcerative colitis (UC), there is currently no widely accepted non-invasive method that can effectively predict endoscopic disease activity. We aimed to develop and validate machine learning (ML) models for predicting it, which are desired to reduce the frequency of endoscopic examinations and related costs.The patients with a diagnosis of UC in two hospitals from January 2016 to January 2021 were enrolled in this study. Thirty nine clinical and laboratory variables were collected. All patients were divided into four groups based on MES or UCEIS scores. Logistic regression (LR) and four ML algorithms were applied to construct the prediction models. The performance of models was evaluated in terms of accuracy, sensitivity, precision, F1 score, and area under the receiver-operating characteristic curve (AUC). Then Shapley additive explanations (SHAP) was applied to determine the importance of the selected variables and interpret the ML models.A total of 420 patients were entered into the study. Twenty four variables showed statistical differences among the groups. After synthetic minority oversampling technique (SMOTE) oversampling and RFE variables selection, the random forests (RF) model with 23 variables in MES and the extreme gradient boosting (XGBoost) model with 21 variables in USEIS, had the greatest discriminatory ability (AUC = 0.8192 in MES and 0.8006 in UCEIS in the test set). The results obtained from SHAP showed that albumin, rectal bleeding, and CRP/ALB contributed the most to the overall model. In addition, the above three variables had a more balanced contribution to each classification under the MES than the UCEIS according to the SHAP values.This proof-of-concept study demonstrated that the ML model could serve as an effective non-invasive approach to predicting endoscopic disease activity for patients with UC. RF and XGBoost, which were first introduced into data-based endoscopic disease activity prediction, are suitable for the present prediction modeling." @default.
- W4313465506 created "2023-01-06" @default.
- W4313465506 creator A5004846643 @default.
- W4313465506 creator A5007127999 @default.
- W4313465506 creator A5012094328 @default.
- W4313465506 creator A5017479066 @default.
- W4313465506 creator A5020496465 @default.
- W4313465506 creator A5049706981 @default.
- W4313465506 creator A5058682983 @default.
- W4313465506 creator A5073501391 @default.
- W4313465506 date "2022-12-21" @default.
- W4313465506 modified "2023-10-06" @default.
- W4313465506 title "Predictive models for endoscopic disease activity in patients with ulcerative colitis: Practical machine learning-based modeling and interpretation" @default.
- W4313465506 cites W1678356000 @default.
- W4313465506 cites W2009446106 @default.
- W4313465506 cites W2018060680 @default.
- W4313465506 cites W2031193040 @default.
- W4313465506 cites W2054755479 @default.
- W4313465506 cites W2055191986 @default.
- W4313465506 cites W2056629400 @default.
- W4313465506 cites W2078032211 @default.
- W4313465506 cites W2092895549 @default.
- W4313465506 cites W2097495558 @default.
- W4313465506 cites W2108332624 @default.
- W4313465506 cites W2122676398 @default.
- W4313465506 cites W2123691345 @default.
- W4313465506 cites W2133458583 @default.
- W4313465506 cites W2148143831 @default.
- W4313465506 cites W2154664046 @default.
- W4313465506 cites W2220275977 @default.
- W4313465506 cites W2272289608 @default.
- W4313465506 cites W2321433516 @default.
- W4313465506 cites W2462386238 @default.
- W4313465506 cites W2464046088 @default.
- W4313465506 cites W2587201313 @default.
- W4313465506 cites W2589870438 @default.
- W4313465506 cites W2766046358 @default.
- W4313465506 cites W2789990184 @default.
- W4313465506 cites W2793438786 @default.
- W4313465506 cites W2810513102 @default.
- W4313465506 cites W2893825494 @default.
- W4313465506 cites W2910928559 @default.
- W4313465506 cites W2913997948 @default.
- W4313465506 cites W2919081348 @default.
- W4313465506 cites W2944098284 @default.
- W4313465506 cites W2970266204 @default.
- W4313465506 cites W2973049920 @default.
- W4313465506 cites W2981948247 @default.
- W4313465506 cites W3000543857 @default.
- W4313465506 cites W3005647161 @default.
- W4313465506 cites W3005985118 @default.
- W4313465506 cites W3009619114 @default.
- W4313465506 cites W3048080159 @default.
- W4313465506 cites W3048842732 @default.
- W4313465506 cites W3086732843 @default.
- W4313465506 cites W3093730473 @default.
- W4313465506 cites W3094323291 @default.
- W4313465506 cites W3111032547 @default.
- W4313465506 cites W3125396083 @default.
- W4313465506 cites W3157079437 @default.
- W4313465506 cites W3159618570 @default.
- W4313465506 cites W3164619782 @default.
- W4313465506 cites W3172402727 @default.
- W4313465506 cites W3180963268 @default.
- W4313465506 cites W3189437144 @default.
- W4313465506 cites W3209211352 @default.
- W4313465506 cites W4210295570 @default.
- W4313465506 cites W4211034582 @default.
- W4313465506 cites W4211138554 @default.
- W4313465506 cites W4214926255 @default.
- W4313465506 cites W4225699320 @default.
- W4313465506 doi "https://doi.org/10.3389/fmed.2022.1043412" @default.
- W4313465506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36619650" @default.
- W4313465506 hasPublicationYear "2022" @default.
- W4313465506 type Work @default.
- W4313465506 citedByCount "2" @default.
- W4313465506 countsByYear W43134655062023 @default.
- W4313465506 crossrefType "journal-article" @default.
- W4313465506 hasAuthorship W4313465506A5004846643 @default.
- W4313465506 hasAuthorship W4313465506A5007127999 @default.
- W4313465506 hasAuthorship W4313465506A5012094328 @default.
- W4313465506 hasAuthorship W4313465506A5017479066 @default.
- W4313465506 hasAuthorship W4313465506A5020496465 @default.
- W4313465506 hasAuthorship W4313465506A5049706981 @default.
- W4313465506 hasAuthorship W4313465506A5058682983 @default.
- W4313465506 hasAuthorship W4313465506A5073501391 @default.
- W4313465506 hasBestOaLocation W43134655061 @default.
- W4313465506 hasConcept C105795698 @default.
- W4313465506 hasConcept C119857082 @default.
- W4313465506 hasConcept C126322002 @default.
- W4313465506 hasConcept C151956035 @default.
- W4313465506 hasConcept C154945302 @default.
- W4313465506 hasConcept C169258074 @default.
- W4313465506 hasConcept C169903167 @default.
- W4313465506 hasConcept C197323446 @default.
- W4313465506 hasConcept C2776257435 @default.
- W4313465506 hasConcept C2779134260 @default.
- W4313465506 hasConcept C2780479503 @default.
- W4313465506 hasConcept C31258907 @default.
- W4313465506 hasConcept C33923547 @default.