Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313466023> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4313466023 endingPage "47" @default.
- W4313466023 startingPage "42" @default.
- W4313466023 abstract "In this study, a novel multiple frame based image and texture independent Convolutional Neural Network (CNN) noise estimator is introduced. Noise estimation is a crucial step for denoising algorithms, especially for ones that are called “non-blind”. The estimator works for additive Gaussian noise for varying noise levels. The noise levels studied in this work have a standard deviation equal to 5 to 25 increasing 5 by 5. Since there is no database for noisy multiple images to train and validate the network, two frames of synthetic noisy images with a variety of noise levels are created by adding Additive White Gaussian Noise (AWGN) to each clean image. The proposed method is applied on the most popular gray level images besides the color image databases such as Kodak, McMaster, BSDS500 in order to compare the results with the other works. Image databases comprise indoor and outdoor scenes that have fine details and richer texture. The estimator has an accuracy rate of 99 % for the classification and favourable results for the regression. The proposed method outperforms traditional methods in most cases. And the regression output can be used with any non-blind denoising method." @default.
- W4313466023 created "2023-01-06" @default.
- W4313466023 creator A5012122284 @default.
- W4313466023 creator A5090001692 @default.
- W4313466023 date "2022-12-21" @default.
- W4313466023 modified "2023-10-16" @default.
- W4313466023 title "Image and Texture Independent Deep Learning Noise Estimation Using Multiple Frames" @default.
- W4313466023 doi "https://doi.org/10.5755/j02.eie.30586" @default.
- W4313466023 hasPublicationYear "2022" @default.
- W4313466023 type Work @default.
- W4313466023 citedByCount "1" @default.
- W4313466023 countsByYear W43134660232023 @default.
- W4313466023 crossrefType "journal-article" @default.
- W4313466023 hasAuthorship W4313466023A5012122284 @default.
- W4313466023 hasAuthorship W4313466023A5090001692 @default.
- W4313466023 hasBestOaLocation W43134660231 @default.
- W4313466023 hasConcept C105795698 @default.
- W4313466023 hasConcept C112633086 @default.
- W4313466023 hasConcept C115961682 @default.
- W4313466023 hasConcept C153180895 @default.
- W4313466023 hasConcept C154945302 @default.
- W4313466023 hasConcept C163294075 @default.
- W4313466023 hasConcept C169334058 @default.
- W4313466023 hasConcept C185429906 @default.
- W4313466023 hasConcept C29265498 @default.
- W4313466023 hasConcept C31972630 @default.
- W4313466023 hasConcept C33923547 @default.
- W4313466023 hasConcept C35772409 @default.
- W4313466023 hasConcept C41008148 @default.
- W4313466023 hasConcept C4199805 @default.
- W4313466023 hasConcept C81363708 @default.
- W4313466023 hasConcept C99498987 @default.
- W4313466023 hasConceptScore W4313466023C105795698 @default.
- W4313466023 hasConceptScore W4313466023C112633086 @default.
- W4313466023 hasConceptScore W4313466023C115961682 @default.
- W4313466023 hasConceptScore W4313466023C153180895 @default.
- W4313466023 hasConceptScore W4313466023C154945302 @default.
- W4313466023 hasConceptScore W4313466023C163294075 @default.
- W4313466023 hasConceptScore W4313466023C169334058 @default.
- W4313466023 hasConceptScore W4313466023C185429906 @default.
- W4313466023 hasConceptScore W4313466023C29265498 @default.
- W4313466023 hasConceptScore W4313466023C31972630 @default.
- W4313466023 hasConceptScore W4313466023C33923547 @default.
- W4313466023 hasConceptScore W4313466023C35772409 @default.
- W4313466023 hasConceptScore W4313466023C41008148 @default.
- W4313466023 hasConceptScore W4313466023C4199805 @default.
- W4313466023 hasConceptScore W4313466023C81363708 @default.
- W4313466023 hasConceptScore W4313466023C99498987 @default.
- W4313466023 hasIssue "6" @default.
- W4313466023 hasLocation W43134660231 @default.
- W4313466023 hasLocation W43134660232 @default.
- W4313466023 hasLocation W43134660233 @default.
- W4313466023 hasLocation W43134660234 @default.
- W4313466023 hasOpenAccess W4313466023 @default.
- W4313466023 hasPrimaryLocation W43134660231 @default.
- W4313466023 hasRelatedWork W1607924090 @default.
- W4313466023 hasRelatedWork W1974392290 @default.
- W4313466023 hasRelatedWork W2033757130 @default.
- W4313466023 hasRelatedWork W2074565401 @default.
- W4313466023 hasRelatedWork W2090859501 @default.
- W4313466023 hasRelatedWork W2124371593 @default.
- W4313466023 hasRelatedWork W2545294132 @default.
- W4313466023 hasRelatedWork W3103566292 @default.
- W4313466023 hasRelatedWork W4297491189 @default.
- W4313466023 hasRelatedWork W972036175 @default.
- W4313466023 hasVolume "28" @default.
- W4313466023 isParatext "false" @default.
- W4313466023 isRetracted "false" @default.
- W4313466023 workType "article" @default.