Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313466078> ?p ?o ?g. }
- W4313466078 abstract "In this paper, we consider incorporating data associated with the sun’s north and south polar field strengths to improve solar flare prediction performance using machine learning models. When used to supplement local data from active regions on the photospheric magnetic field of the sun, the polar field data provides global information to the predictor. While such global features have been previously proposed for predicting the next solar cycle’s intensity, in this paper we propose using them to help classify individual solar flares. We conduct experiments using HMI data employing four different machine learning algorithms that can exploit polar field information. Additionally, we propose a novel probabilistic mixture of experts model that can simply and effectively incorporate polar field data and provide on-par prediction performance with state-of-the-art solar flare prediction algorithms such as the Recurrent Neural Network (RNN). Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1% 1 ." @default.
- W4313466078 created "2023-01-06" @default.
- W4313466078 creator A5016694665 @default.
- W4313466078 creator A5020819058 @default.
- W4313466078 creator A5027081374 @default.
- W4313466078 creator A5053795386 @default.
- W4313466078 creator A5063470369 @default.
- W4313466078 creator A5077692655 @default.
- W4313466078 creator A5087399189 @default.
- W4313466078 date "2022-12-21" @default.
- W4313466078 modified "2023-10-03" @default.
- W4313466078 title "Incorporating polar field data for improved solar flare prediction" @default.
- W4313466078 cites W1970646006 @default.
- W4313466078 cites W1987308214 @default.
- W4313466078 cites W1988562508 @default.
- W4313466078 cites W1989838065 @default.
- W4313466078 cites W1996487263 @default.
- W4313466078 cites W1999016464 @default.
- W4313466078 cites W1999545528 @default.
- W4313466078 cites W1999800793 @default.
- W4313466078 cites W2012007653 @default.
- W4313466078 cites W2038277686 @default.
- W4313466078 cites W2051434435 @default.
- W4313466078 cites W2053154970 @default.
- W4313466078 cites W2068238590 @default.
- W4313466078 cites W2074379509 @default.
- W4313466078 cites W2094483427 @default.
- W4313466078 cites W2100400062 @default.
- W4313466078 cites W2111078819 @default.
- W4313466078 cites W2122755404 @default.
- W4313466078 cites W2141375123 @default.
- W4313466078 cites W2148589488 @default.
- W4313466078 cites W2180748755 @default.
- W4313466078 cites W2549449189 @default.
- W4313466078 cites W2736299629 @default.
- W4313466078 cites W2743247456 @default.
- W4313466078 cites W2783270368 @default.
- W4313466078 cites W2793171700 @default.
- W4313466078 cites W2920947047 @default.
- W4313466078 cites W2946010671 @default.
- W4313466078 cites W2954809622 @default.
- W4313466078 cites W2956114043 @default.
- W4313466078 cites W2963158600 @default.
- W4313466078 cites W2969487577 @default.
- W4313466078 cites W3024706845 @default.
- W4313466078 cites W3099186933 @default.
- W4313466078 cites W3102780218 @default.
- W4313466078 cites W3103216244 @default.
- W4313466078 cites W3112250171 @default.
- W4313466078 cites W3121631677 @default.
- W4313466078 cites W3124840760 @default.
- W4313466078 cites W3205998005 @default.
- W4313466078 doi "https://doi.org/10.3389/fspas.2022.1040107" @default.
- W4313466078 hasPublicationYear "2022" @default.
- W4313466078 type Work @default.
- W4313466078 citedByCount "2" @default.
- W4313466078 countsByYear W43134660782023 @default.
- W4313466078 crossrefType "journal-article" @default.
- W4313466078 hasAuthorship W4313466078A5016694665 @default.
- W4313466078 hasAuthorship W4313466078A5020819058 @default.
- W4313466078 hasAuthorship W4313466078A5027081374 @default.
- W4313466078 hasAuthorship W4313466078A5053795386 @default.
- W4313466078 hasAuthorship W4313466078A5063470369 @default.
- W4313466078 hasAuthorship W4313466078A5077692655 @default.
- W4313466078 hasAuthorship W4313466078A5087399189 @default.
- W4313466078 hasBestOaLocation W43134660781 @default.
- W4313466078 hasConcept C119857082 @default.
- W4313466078 hasConcept C121332964 @default.
- W4313466078 hasConcept C1276947 @default.
- W4313466078 hasConcept C154945302 @default.
- W4313466078 hasConcept C185001636 @default.
- W4313466078 hasConcept C202444582 @default.
- W4313466078 hasConcept C2779588948 @default.
- W4313466078 hasConcept C29705727 @default.
- W4313466078 hasConcept C33923547 @default.
- W4313466078 hasConcept C41008148 @default.
- W4313466078 hasConcept C44870925 @default.
- W4313466078 hasConcept C49937458 @default.
- W4313466078 hasConcept C50644808 @default.
- W4313466078 hasConcept C9652623 @default.
- W4313466078 hasConceptScore W4313466078C119857082 @default.
- W4313466078 hasConceptScore W4313466078C121332964 @default.
- W4313466078 hasConceptScore W4313466078C1276947 @default.
- W4313466078 hasConceptScore W4313466078C154945302 @default.
- W4313466078 hasConceptScore W4313466078C185001636 @default.
- W4313466078 hasConceptScore W4313466078C202444582 @default.
- W4313466078 hasConceptScore W4313466078C2779588948 @default.
- W4313466078 hasConceptScore W4313466078C29705727 @default.
- W4313466078 hasConceptScore W4313466078C33923547 @default.
- W4313466078 hasConceptScore W4313466078C41008148 @default.
- W4313466078 hasConceptScore W4313466078C44870925 @default.
- W4313466078 hasConceptScore W4313466078C49937458 @default.
- W4313466078 hasConceptScore W4313466078C50644808 @default.
- W4313466078 hasConceptScore W4313466078C9652623 @default.
- W4313466078 hasFunder F4320306101 @default.
- W4313466078 hasLocation W43134660781 @default.
- W4313466078 hasLocation W43134660782 @default.
- W4313466078 hasLocation W43134660783 @default.
- W4313466078 hasOpenAccess W4313466078 @default.
- W4313466078 hasPrimaryLocation W43134660781 @default.