Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467048> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313467048 abstract "Maize is susceptible to infect pest disease, and early disease detection is key to preventing the reduction of maize yields. The raw data used for plant disease detection are commonly RGB images and hyperspectral images (HSI). RGB images can be acquired rapidly and low-costly, but the detection accuracy is not satisfactory. On the contrary, using HSIs tends to obtain higher detection accuracy, but HSIs are difficult and high-cost to obtain in field. To overcome this contradiction, we have proposed the maize spectral recovery disease detection framework which includes two parts: the maize spectral recovery network based on the advanced hyperspectral recovery convolutional neural network (HSCNN+) and the maize disease detection network based on the convolutional neural network (CNN). Taking raw RGB data as input of the framework, the output reconstructed HSIs are used as input of disease detection network to achieve disease detection task. As a result, the detection accuracy obtained by using the low-cost raw RGB data almost as same as that obtained by using HSIs directly. The HSCNN+ is found to be fit to our spectral recovery model and the reconstruction fidelity was satisfactory. Experimental results demonstrate that the reconstructed HSIs efficiently improve detection accuracy compared with raw RGB image in tested scenarios, especially in complex environment scenario, for which the detection accuracy increases by 6.14%. The proposed framework has the advantages of fast, low cost and high detection precision. Moreover, the framework offers the possibility of real-time and precise field disease detection and can be applied in agricultural robots." @default.
- W4313467048 created "2023-01-06" @default.
- W4313467048 creator A5004174956 @default.
- W4313467048 creator A5016142983 @default.
- W4313467048 creator A5042431015 @default.
- W4313467048 creator A5063193013 @default.
- W4313467048 creator A5086733146 @default.
- W4313467048 creator A5087018671 @default.
- W4313467048 date "2022-12-21" @default.
- W4313467048 modified "2023-09-26" @default.
- W4313467048 title "Maize disease detection based on spectral recovery from RGB images" @default.
- W4313467048 cites W1979657381 @default.
- W4313467048 cites W2523461497 @default.
- W4313467048 cites W2790739169 @default.
- W4313467048 cites W2792039216 @default.
- W4313467048 cites W2803166212 @default.
- W4313467048 cites W2963505747 @default.
- W4313467048 cites W2969933026 @default.
- W4313467048 cites W2987984071 @default.
- W4313467048 cites W3037523865 @default.
- W4313467048 cites W3098070857 @default.
- W4313467048 cites W3119027282 @default.
- W4313467048 cites W3122354399 @default.
- W4313467048 cites W3125103848 @default.
- W4313467048 cites W3136213652 @default.
- W4313467048 cites W3162088729 @default.
- W4313467048 cites W3201906676 @default.
- W4313467048 cites W3206564308 @default.
- W4313467048 cites W3210739020 @default.
- W4313467048 cites W4224053822 @default.
- W4313467048 cites W4226118325 @default.
- W4313467048 cites W4285085921 @default.
- W4313467048 cites W4285745359 @default.
- W4313467048 doi "https://doi.org/10.3389/fpls.2022.1056842" @default.
- W4313467048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36618618" @default.
- W4313467048 hasPublicationYear "2022" @default.
- W4313467048 type Work @default.
- W4313467048 citedByCount "0" @default.
- W4313467048 crossrefType "journal-article" @default.
- W4313467048 hasAuthorship W4313467048A5004174956 @default.
- W4313467048 hasAuthorship W4313467048A5016142983 @default.
- W4313467048 hasAuthorship W4313467048A5042431015 @default.
- W4313467048 hasAuthorship W4313467048A5063193013 @default.
- W4313467048 hasAuthorship W4313467048A5086733146 @default.
- W4313467048 hasAuthorship W4313467048A5087018671 @default.
- W4313467048 hasBestOaLocation W43134670481 @default.
- W4313467048 hasConcept C153180895 @default.
- W4313467048 hasConcept C154945302 @default.
- W4313467048 hasConcept C159078339 @default.
- W4313467048 hasConcept C31972630 @default.
- W4313467048 hasConcept C41008148 @default.
- W4313467048 hasConcept C81363708 @default.
- W4313467048 hasConcept C82990744 @default.
- W4313467048 hasConceptScore W4313467048C153180895 @default.
- W4313467048 hasConceptScore W4313467048C154945302 @default.
- W4313467048 hasConceptScore W4313467048C159078339 @default.
- W4313467048 hasConceptScore W4313467048C31972630 @default.
- W4313467048 hasConceptScore W4313467048C41008148 @default.
- W4313467048 hasConceptScore W4313467048C81363708 @default.
- W4313467048 hasConceptScore W4313467048C82990744 @default.
- W4313467048 hasFunder F4320321001 @default.
- W4313467048 hasLocation W43134670481 @default.
- W4313467048 hasLocation W43134670482 @default.
- W4313467048 hasLocation W43134670483 @default.
- W4313467048 hasOpenAccess W4313467048 @default.
- W4313467048 hasPrimaryLocation W43134670481 @default.
- W4313467048 hasRelatedWork W2052518016 @default.
- W4313467048 hasRelatedWork W2085956791 @default.
- W4313467048 hasRelatedWork W2283162247 @default.
- W4313467048 hasRelatedWork W2314488738 @default.
- W4313467048 hasRelatedWork W2524507886 @default.
- W4313467048 hasRelatedWork W2771653066 @default.
- W4313467048 hasRelatedWork W2774550181 @default.
- W4313467048 hasRelatedWork W2901949253 @default.
- W4313467048 hasRelatedWork W3126336475 @default.
- W4313467048 hasRelatedWork W4212983513 @default.
- W4313467048 hasVolume "13" @default.
- W4313467048 isParatext "false" @default.
- W4313467048 isRetracted "false" @default.
- W4313467048 workType "article" @default.