Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467066> ?p ?o ?g. }
- W4313467066 endingPage "37" @default.
- W4313467066 startingPage "37" @default.
- W4313467066 abstract "Recently, the development of a rapid detection approach for glaucoma has been widely proposed to assist medical personnel in detecting glaucoma disease thanks to the outstanding performance of artificial intelligence. In several glaucoma detectors, cup-to-disc ratio (CDR) and disc damage likelihood scale (DDLS) play roles as the major objects that are used to analyze glaucoma. However, using CDR and DDLS is quite difficult since every person has different characteristics (shape, size, etc.) of the optic disc and optic cup. To overcome this issue, we proposed an alternative way to detect glaucoma disease by analyzing the damage to the retinal nerve fiber layer (RNFL). Our proposed method is divided into two processes: (1) the pre-treatment process and (2) the glaucoma classification process. We started the pre-treatment process by removing unnecessary parts, such as the optic disc and blood vessels. Both parts are considered for removal since they might be obstacles during the analysis process. For the classification stages, we used nine deep-learning architectures. We evaluated our proposed method in the ORIGA dataset and achieved the highest accuracy of 92.88% with an AUC of 89.34%. This result is improved by more than 15% from the previous research work. Finally, it is expected that our model could help improve eye disease diagnosis and assessment." @default.
- W4313467066 created "2023-01-06" @default.
- W4313467066 creator A5007110552 @default.
- W4313467066 creator A5013291354 @default.
- W4313467066 creator A5025664920 @default.
- W4313467066 creator A5026864377 @default.
- W4313467066 creator A5032886297 @default.
- W4313467066 creator A5073362531 @default.
- W4313467066 date "2022-12-20" @default.
- W4313467066 modified "2023-10-14" @default.
- W4313467066 title "Retinal Nerve Fiber Layer Analysis Using Deep Learning to Improve Glaucoma Detection in Eye Disease Assessment" @default.
- W4313467066 cites W1616249925 @default.
- W4313467066 cites W1904432309 @default.
- W4313467066 cites W1976468890 @default.
- W4313467066 cites W2097117768 @default.
- W4313467066 cites W2116040950 @default.
- W4313467066 cites W2116273337 @default.
- W4313467066 cites W2133059825 @default.
- W4313467066 cites W2183341477 @default.
- W4313467066 cites W2194775991 @default.
- W4313467066 cites W2293295816 @default.
- W4313467066 cites W2402050431 @default.
- W4313467066 cites W2512450393 @default.
- W4313467066 cites W2531409750 @default.
- W4313467066 cites W2532871684 @default.
- W4313467066 cites W2618530766 @default.
- W4313467066 cites W2766296277 @default.
- W4313467066 cites W2772859221 @default.
- W4313467066 cites W2773612948 @default.
- W4313467066 cites W2783612423 @default.
- W4313467066 cites W2791124061 @default.
- W4313467066 cites W2793119512 @default.
- W4313467066 cites W2806352495 @default.
- W4313467066 cites W2809504579 @default.
- W4313467066 cites W2811146364 @default.
- W4313467066 cites W2890575186 @default.
- W4313467066 cites W2892009991 @default.
- W4313467066 cites W2899254734 @default.
- W4313467066 cites W2913363989 @default.
- W4313467066 cites W2914387892 @default.
- W4313467066 cites W2921948732 @default.
- W4313467066 cites W2935464137 @default.
- W4313467066 cites W2945789372 @default.
- W4313467066 cites W2963446712 @default.
- W4313467066 cites W2964081807 @default.
- W4313467066 cites W2964350391 @default.
- W4313467066 cites W2964508329 @default.
- W4313467066 cites W2967446142 @default.
- W4313467066 cites W2967553000 @default.
- W4313467066 cites W2968097744 @default.
- W4313467066 cites W2969678086 @default.
- W4313467066 cites W2979824901 @default.
- W4313467066 cites W2979889810 @default.
- W4313467066 cites W2981699788 @default.
- W4313467066 cites W3016150883 @default.
- W4313467066 cites W3023329151 @default.
- W4313467066 cites W3042340386 @default.
- W4313467066 cites W3047257194 @default.
- W4313467066 cites W3082424298 @default.
- W4313467066 cites W3082967565 @default.
- W4313467066 cites W3091259966 @default.
- W4313467066 cites W3101507774 @default.
- W4313467066 cites W3114864202 @default.
- W4313467066 cites W3119904398 @default.
- W4313467066 cites W3131708224 @default.
- W4313467066 cites W3154406111 @default.
- W4313467066 cites W3170709166 @default.
- W4313467066 cites W3196962213 @default.
- W4313467066 cites W3210782933 @default.
- W4313467066 cites W4200099081 @default.
- W4313467066 cites W4205257730 @default.
- W4313467066 cites W4205930639 @default.
- W4313467066 cites W4252601658 @default.
- W4313467066 cites W4282005486 @default.
- W4313467066 cites W4289936402 @default.
- W4313467066 cites W4295253595 @default.
- W4313467066 cites W4295592723 @default.
- W4313467066 cites W4301184325 @default.
- W4313467066 cites W4306771247 @default.
- W4313467066 cites W4309457179 @default.
- W4313467066 cites W4310039761 @default.
- W4313467066 doi "https://doi.org/10.3390/app13010037" @default.
- W4313467066 hasPublicationYear "2022" @default.
- W4313467066 type Work @default.
- W4313467066 citedByCount "4" @default.
- W4313467066 countsByYear W43134670662023 @default.
- W4313467066 crossrefType "journal-article" @default.
- W4313467066 hasAuthorship W4313467066A5007110552 @default.
- W4313467066 hasAuthorship W4313467066A5013291354 @default.
- W4313467066 hasAuthorship W4313467066A5025664920 @default.
- W4313467066 hasAuthorship W4313467066A5026864377 @default.
- W4313467066 hasAuthorship W4313467066A5032886297 @default.
- W4313467066 hasAuthorship W4313467066A5073362531 @default.
- W4313467066 hasBestOaLocation W43134670661 @default.
- W4313467066 hasConcept C111919701 @default.
- W4313467066 hasConcept C118487528 @default.
- W4313467066 hasConcept C119767625 @default.
- W4313467066 hasConcept C154945302 @default.