Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467522> ?p ?o ?g. }
- W4313467522 abstract "In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desirable as it can save time and resources dedicated to wet-lab experimentation. This study aims to computationally predict siRNA nanoparticles in vivo efficacy. A data set containing 120 entries was prepared by combining molecular descriptors of the ionizable lipids together with two nanoparticles formulation characteristics. Input descriptor combinations were selected by an evolutionary algorithm. Artificial neural networks, support vector machines and partial least squares regression were used for QSAR modeling. Depending on how the data set is split, two training sets and two external validation sets were prepared. Training and validation sets contained 90 and 30 entries respectively. The results showed the successful predictions of validation set log (siRNA dose) with Rval2= 0.86-0.89 and 0.75-80 for validation sets one and two, respectively. Artificial neural networks resulted in the best Rval2 for both validation sets. For predictions that have high bias, improvement of Rval2 from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by combining cheminformatics with machine learning techniques." @default.
- W4313467522 created "2023-01-06" @default.
- W4313467522 creator A5023144542 @default.
- W4313467522 creator A5055265483 @default.
- W4313467522 creator A5056827706 @default.
- W4313467522 date "2022-12-21" @default.
- W4313467522 modified "2023-09-26" @default.
- W4313467522 title "In silico prediction of siRNA ionizable-lipid nanoparticles In vivo efficacy: Machine learning modeling based on formulation and molecular descriptors" @default.
- W4313467522 cites W1485111065 @default.
- W4313467522 cites W1562424368 @default.
- W4313467522 cites W1611419331 @default.
- W4313467522 cites W1647075334 @default.
- W4313467522 cites W1964146045 @default.
- W4313467522 cites W1977160822 @default.
- W4313467522 cites W1996851544 @default.
- W4313467522 cites W2000071382 @default.
- W4313467522 cites W2015931265 @default.
- W4313467522 cites W2025580327 @default.
- W4313467522 cites W2045468438 @default.
- W4313467522 cites W2067253662 @default.
- W4313467522 cites W2086747295 @default.
- W4313467522 cites W2087466582 @default.
- W4313467522 cites W2087661061 @default.
- W4313467522 cites W2097057782 @default.
- W4313467522 cites W2105756683 @default.
- W4313467522 cites W2106885643 @default.
- W4313467522 cites W2108394936 @default.
- W4313467522 cites W2111112525 @default.
- W4313467522 cites W2128245586 @default.
- W4313467522 cites W2140959043 @default.
- W4313467522 cites W2155534998 @default.
- W4313467522 cites W2157963336 @default.
- W4313467522 cites W2159887157 @default.
- W4313467522 cites W2169678694 @default.
- W4313467522 cites W2330730783 @default.
- W4313467522 cites W2331411006 @default.
- W4313467522 cites W2401088225 @default.
- W4313467522 cites W2470433456 @default.
- W4313467522 cites W2546926272 @default.
- W4313467522 cites W2557562124 @default.
- W4313467522 cites W2594133976 @default.
- W4313467522 cites W2600400434 @default.
- W4313467522 cites W2604979510 @default.
- W4313467522 cites W2623671274 @default.
- W4313467522 cites W2761328817 @default.
- W4313467522 cites W2763934033 @default.
- W4313467522 cites W2770722548 @default.
- W4313467522 cites W2782485997 @default.
- W4313467522 cites W2784226073 @default.
- W4313467522 cites W2791618607 @default.
- W4313467522 cites W2794356742 @default.
- W4313467522 cites W2804079537 @default.
- W4313467522 cites W2883152153 @default.
- W4313467522 cites W2902189168 @default.
- W4313467522 cites W2908499865 @default.
- W4313467522 cites W2932873667 @default.
- W4313467522 cites W2945507495 @default.
- W4313467522 cites W2999612898 @default.
- W4313467522 cites W3001179699 @default.
- W4313467522 cites W3006737179 @default.
- W4313467522 cites W3008380108 @default.
- W4313467522 cites W3019507087 @default.
- W4313467522 cites W3092461455 @default.
- W4313467522 cites W3096306566 @default.
- W4313467522 cites W3109477231 @default.
- W4313467522 cites W3121560287 @default.
- W4313467522 cites W3164919809 @default.
- W4313467522 cites W370776269 @default.
- W4313467522 cites W4211165734 @default.
- W4313467522 doi "https://doi.org/10.3389/fmolb.2022.1042720" @default.
- W4313467522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36619167" @default.
- W4313467522 hasPublicationYear "2022" @default.
- W4313467522 type Work @default.
- W4313467522 citedByCount "1" @default.
- W4313467522 countsByYear W43134675222023 @default.
- W4313467522 crossrefType "journal-article" @default.
- W4313467522 hasAuthorship W4313467522A5023144542 @default.
- W4313467522 hasAuthorship W4313467522A5055265483 @default.
- W4313467522 hasAuthorship W4313467522A5056827706 @default.
- W4313467522 hasBestOaLocation W43134675221 @default.
- W4313467522 hasConcept C104317684 @default.
- W4313467522 hasConcept C107908354 @default.
- W4313467522 hasConcept C119857082 @default.
- W4313467522 hasConcept C12267149 @default.
- W4313467522 hasConcept C147597530 @default.
- W4313467522 hasConcept C150903083 @default.
- W4313467522 hasConcept C154945302 @default.
- W4313467522 hasConcept C155672457 @default.
- W4313467522 hasConcept C164126121 @default.
- W4313467522 hasConcept C164923092 @default.
- W4313467522 hasConcept C169903167 @default.
- W4313467522 hasConcept C171250308 @default.
- W4313467522 hasConcept C177264268 @default.
- W4313467522 hasConcept C185592680 @default.
- W4313467522 hasConcept C186060115 @default.
- W4313467522 hasConcept C192562407 @default.
- W4313467522 hasConcept C199360897 @default.
- W4313467522 hasConcept C207001950 @default.
- W4313467522 hasConcept C22354355 @default.
- W4313467522 hasConcept C27181475 @default.