Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467527> ?p ?o ?g. }
- W4313467527 endingPage "16" @default.
- W4313467527 startingPage "16" @default.
- W4313467527 abstract "Sembilang National Park, one of the best and largest mangrove areas in Indonesia, is very vulnerable to disturbance by community activities. Changes in the dynamic condition of mangrove forests in Sembilang National Park must be quickly and easily accompanied by mangrove monitoring efforts. One way to monitor mangrove forests is to use remote sensing technology. Recently, machine-learning classification techniques have been widely used to classify mangrove forests. This study aims to investigate the ability of decision tree (DT) and random forest (RF) machine-learning algorithms to determine the mangrove forest distribution in Sembilang National Park. The satellite data used are Landsat-7 ETM+ acquired on 30 June 2002 and Landsat-8 OLI acquired on 9 September 2019, as well as supporting data such as SPOT 6/7 image acquired in 2020–2021, MERIT DEM and an existing mangrove map. The pre-processing includes radiometric and atmospheric corrections performed using the semi-automatic classification plugin contained in Quantum GIS. We applied decision tree and random forest algorithms to classify the mangrove forest. In the DT algorithm, threshold analysis is carried out to obtain the most optimal threshold value in distinguishing mangrove and non-mangrove objects. Here, the use of DT and RF algorithms involves several important parameters, namely, the normalized difference moisture index (NDMI), normalized difference soil index (NDSI), near-infrared (NIR) band, and digital elevation model (DEM) data. The results of DT and RF classification from Landsat-7 ETM+ and Landsat-8 OLI images show similarities regarding mangrove spatial distribution. The DT classification algorithm with the parameter combination NDMI + NDSI + DEM is very effective in classifying Landsat-7 ETM+ image, while the parameter combination NDMI + NIR is very effective in classifying Landsat-8 OLI image. The RF classification algorithm with the parameter Image (6 bands), the number of trees = 100, the number of variables predictor (mtry) is square root (√k), and the minimum number of node sizes = 6, provides the highest overall accuracy for Landsat-7 ETM+ image, while combining Image (7 bands) + NDMI + NDSI + DEM parameters with the number of trees = 100, mtry = all variables (k), and the minimum node size = 6 provides the highest overall accuracy for Landsat-8 OLI image. The overall classification accuracy is higher when using the RF algorithm (99.12%) instead of DT (92.82%) for the Landsat-7 ETM+ image, but it is slightly higher when using the DT algorithm (98.34%) instead of the RF algorithm (97.79%) for the Landsat-8 OLI image. The overall RF classification algorithm outperforms DT because all RF classification model parameters provide a higher producer accuracy in mapping mangrove forests. This development of the classification method should support the monitoring and rehabilitation programs of mangroves more quickly and easily, particularly in Indonesia." @default.
- W4313467527 created "2023-01-06" @default.
- W4313467527 creator A5013272804 @default.
- W4313467527 creator A5051236232 @default.
- W4313467527 creator A5052699137 @default.
- W4313467527 creator A5082319849 @default.
- W4313467527 date "2022-12-21" @default.
- W4313467527 modified "2023-10-15" @default.
- W4313467527 title "Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia" @default.
- W4313467527 cites W1519043595 @default.
- W4313467527 cites W1554190159 @default.
- W4313467527 cites W1969548928 @default.
- W4313467527 cites W1978283872 @default.
- W4313467527 cites W1984667420 @default.
- W4313467527 cites W1986411350 @default.
- W4313467527 cites W1994508789 @default.
- W4313467527 cites W1998028717 @default.
- W4313467527 cites W2004553299 @default.
- W4313467527 cites W2027053886 @default.
- W4313467527 cites W2030680592 @default.
- W4313467527 cites W2035549557 @default.
- W4313467527 cites W2047306297 @default.
- W4313467527 cites W2075046504 @default.
- W4313467527 cites W2076516557 @default.
- W4313467527 cites W2097769177 @default.
- W4313467527 cites W2105536892 @default.
- W4313467527 cites W2113263681 @default.
- W4313467527 cites W2114828048 @default.
- W4313467527 cites W2115758154 @default.
- W4313467527 cites W2126236168 @default.
- W4313467527 cites W2139086914 @default.
- W4313467527 cites W2156692856 @default.
- W4313467527 cites W2160615957 @default.
- W4313467527 cites W2161407512 @default.
- W4313467527 cites W2167385505 @default.
- W4313467527 cites W2167753478 @default.
- W4313467527 cites W2168809519 @default.
- W4313467527 cites W2611718212 @default.
- W4313467527 cites W2620109964 @default.
- W4313467527 cites W2793728001 @default.
- W4313467527 cites W2911964244 @default.
- W4313467527 cites W2917077894 @default.
- W4313467527 cites W2935317424 @default.
- W4313467527 cites W2940358003 @default.
- W4313467527 cites W2982371518 @default.
- W4313467527 cites W2992272595 @default.
- W4313467527 cites W3007229226 @default.
- W4313467527 cites W3045585619 @default.
- W4313467527 cites W3099052740 @default.
- W4313467527 cites W3108942912 @default.
- W4313467527 cites W3127598225 @default.
- W4313467527 cites W3129412873 @default.
- W4313467527 cites W3196840313 @default.
- W4313467527 cites W3196968202 @default.
- W4313467527 cites W4200041341 @default.
- W4313467527 cites W4200544643 @default.
- W4313467527 cites W4207069772 @default.
- W4313467527 cites W4220867799 @default.
- W4313467527 cites W4282553668 @default.
- W4313467527 cites W4286587379 @default.
- W4313467527 cites W4294325321 @default.
- W4313467527 cites W998093192 @default.
- W4313467527 doi "https://doi.org/10.3390/rs15010016" @default.
- W4313467527 hasPublicationYear "2022" @default.
- W4313467527 type Work @default.
- W4313467527 citedByCount "5" @default.
- W4313467527 countsByYear W43134675272023 @default.
- W4313467527 crossrefType "journal-article" @default.
- W4313467527 hasAuthorship W4313467527A5013272804 @default.
- W4313467527 hasAuthorship W4313467527A5051236232 @default.
- W4313467527 hasAuthorship W4313467527A5052699137 @default.
- W4313467527 hasAuthorship W4313467527A5082319849 @default.
- W4313467527 hasBestOaLocation W43134675271 @default.
- W4313467527 hasConcept C11413529 @default.
- W4313467527 hasConcept C154945302 @default.
- W4313467527 hasConcept C166957645 @default.
- W4313467527 hasConcept C169258074 @default.
- W4313467527 hasConcept C18903297 @default.
- W4313467527 hasConcept C205649164 @default.
- W4313467527 hasConcept C2780993040 @default.
- W4313467527 hasConcept C39432304 @default.
- W4313467527 hasConcept C41008148 @default.
- W4313467527 hasConcept C62649853 @default.
- W4313467527 hasConcept C68874143 @default.
- W4313467527 hasConcept C84525736 @default.
- W4313467527 hasConcept C86803240 @default.
- W4313467527 hasConcept C97137747 @default.
- W4313467527 hasConceptScore W4313467527C11413529 @default.
- W4313467527 hasConceptScore W4313467527C154945302 @default.
- W4313467527 hasConceptScore W4313467527C166957645 @default.
- W4313467527 hasConceptScore W4313467527C169258074 @default.
- W4313467527 hasConceptScore W4313467527C18903297 @default.
- W4313467527 hasConceptScore W4313467527C205649164 @default.
- W4313467527 hasConceptScore W4313467527C2780993040 @default.
- W4313467527 hasConceptScore W4313467527C39432304 @default.
- W4313467527 hasConceptScore W4313467527C41008148 @default.
- W4313467527 hasConceptScore W4313467527C62649853 @default.
- W4313467527 hasConceptScore W4313467527C68874143 @default.