Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467543> ?p ?o ?g. }
- W4313467543 endingPage "17" @default.
- W4313467543 startingPage "17" @default.
- W4313467543 abstract "Riparian forests are complex ecosystems shaped by their connectivity to a river system, which produces a mosaic of ages and species. Because of increasing anthropic pressure from factors such as damming or climate change, they are often endangered and suffer from a drop in groundwater accessibility and increased water stress. By combining hyperspectral, LiDAR, and forestry datasets along a 20 km corridor of the Ain River, this paper assesses the ability of remote sensing to characterize and monitor such environments. These datasets are used to investigate changes in site conditions and forest characteristics, such as height and canopy water content, along a gradient of ecosystem ages and for reaches under distinct geomorphic conditions (shifting, sediment-starved, incised). The data show that, over time, forest patches aggrade, and the forest grows and becomes more post-pioneer. However, forest patches that are located in the incised reach aggrade more and appear to be less developed in height, more stressed, and feature species compositions reflecting dryer conditions, in comparison with better-connected patches of the same age. Random forest analysis was applied to predict the indicators of forest connectivity with remotely sensed LIDAR and hyperspectral data, in order to identify the spatial trends at the reach scale and compare them with the geomorphic segmentation of the river. The random forest classifications achieved an accuracy between 80% and 90% and resulted in spatial trends that highlighted the differences in hydrological connectivity between differing geomorphic conditions. Overall, remote sensing appears to be a good tool for characterizing the impact of channel incisions and adjustments on riparian forest conditions by identifying the locations of dryer forest patches. In addition, good accuracy was achieved when attempting to classify these forest patches, even when using hyperspectral data alone, which suggests that satellite data could become a powerful tool for monitoring the health of riparian forests, in the context of increasing anthropic pressures." @default.
- W4313467543 created "2023-01-06" @default.
- W4313467543 creator A5005777072 @default.
- W4313467543 creator A5020417939 @default.
- W4313467543 creator A5024789982 @default.
- W4313467543 creator A5032373497 @default.
- W4313467543 creator A5054198563 @default.
- W4313467543 creator A5083494960 @default.
- W4313467543 date "2022-12-21" @default.
- W4313467543 modified "2023-10-17" @default.
- W4313467543 title "Combining Hyperspectral, LiDAR, and Forestry Data to Characterize Riparian Forests along Age and Hydrological Gradients" @default.
- W4313467543 cites W1520929741 @default.
- W4313467543 cites W1960923642 @default.
- W4313467543 cites W1965362203 @default.
- W4313467543 cites W1967621805 @default.
- W4313467543 cites W1969566724 @default.
- W4313467543 cites W1971023834 @default.
- W4313467543 cites W1975873328 @default.
- W4313467543 cites W1978617972 @default.
- W4313467543 cites W1982708909 @default.
- W4313467543 cites W1984860155 @default.
- W4313467543 cites W1985555755 @default.
- W4313467543 cites W1991305785 @default.
- W4313467543 cites W1993506271 @default.
- W4313467543 cites W2007522504 @default.
- W4313467543 cites W2022785155 @default.
- W4313467543 cites W2027666501 @default.
- W4313467543 cites W2029257298 @default.
- W4313467543 cites W2031372619 @default.
- W4313467543 cites W2036003376 @default.
- W4313467543 cites W2041887837 @default.
- W4313467543 cites W2049398443 @default.
- W4313467543 cites W2059239243 @default.
- W4313467543 cites W2064077006 @default.
- W4313467543 cites W2069529316 @default.
- W4313467543 cites W2072262083 @default.
- W4313467543 cites W2076358935 @default.
- W4313467543 cites W2095055020 @default.
- W4313467543 cites W2099559336 @default.
- W4313467543 cites W2114006057 @default.
- W4313467543 cites W2119369571 @default.
- W4313467543 cites W2120914348 @default.
- W4313467543 cites W2122710529 @default.
- W4313467543 cites W2146317308 @default.
- W4313467543 cites W2168964286 @default.
- W4313467543 cites W2248139498 @default.
- W4313467543 cites W2278171753 @default.
- W4313467543 cites W2338219950 @default.
- W4313467543 cites W2342031504 @default.
- W4313467543 cites W2504687080 @default.
- W4313467543 cites W2519669455 @default.
- W4313467543 cites W2538659350 @default.
- W4313467543 cites W2558380412 @default.
- W4313467543 cites W2616070863 @default.
- W4313467543 cites W2733023729 @default.
- W4313467543 cites W281927336 @default.
- W4313467543 cites W2892177252 @default.
- W4313467543 cites W2898859577 @default.
- W4313467543 cites W2905268483 @default.
- W4313467543 cites W2954718871 @default.
- W4313467543 cites W3015903713 @default.
- W4313467543 cites W3016546092 @default.
- W4313467543 cites W3020832107 @default.
- W4313467543 cites W3023789500 @default.
- W4313467543 cites W3088507381 @default.
- W4313467543 cites W3101026484 @default.
- W4313467543 cites W3161655478 @default.
- W4313467543 cites W3163522414 @default.
- W4313467543 cites W3181677207 @default.
- W4313467543 cites W4211056572 @default.
- W4313467543 cites W4285585634 @default.
- W4313467543 cites W4293235916 @default.
- W4313467543 doi "https://doi.org/10.3390/rs15010017" @default.
- W4313467543 hasPublicationYear "2022" @default.
- W4313467543 type Work @default.
- W4313467543 citedByCount "1" @default.
- W4313467543 countsByYear W43134675432023 @default.
- W4313467543 crossrefType "journal-article" @default.
- W4313467543 hasAuthorship W4313467543A5005777072 @default.
- W4313467543 hasAuthorship W4313467543A5020417939 @default.
- W4313467543 hasAuthorship W4313467543A5024789982 @default.
- W4313467543 hasAuthorship W4313467543A5032373497 @default.
- W4313467543 hasAuthorship W4313467543A5054198563 @default.
- W4313467543 hasAuthorship W4313467543A5083494960 @default.
- W4313467543 hasBestOaLocation W43134675431 @default.
- W4313467543 hasConcept C100970517 @default.
- W4313467543 hasConcept C101000010 @default.
- W4313467543 hasConcept C11731853 @default.
- W4313467543 hasConcept C119857082 @default.
- W4313467543 hasConcept C127313418 @default.
- W4313467543 hasConcept C149712012 @default.
- W4313467543 hasConcept C159078339 @default.
- W4313467543 hasConcept C166957645 @default.
- W4313467543 hasConcept C169258074 @default.
- W4313467543 hasConcept C185933670 @default.
- W4313467543 hasConcept C187320778 @default.
- W4313467543 hasConcept C18903297 @default.
- W4313467543 hasConcept C205649164 @default.