Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313467582> ?p ?o ?g. }
- W4313467582 endingPage "885" @default.
- W4313467582 startingPage "877" @default.
- W4313467582 abstract "Existing datasets of economic sanctions rely primarily on secondary sources and do not tend to take full advantage of government documents related to economic coercion. Such data may miss sanctions, and do not capture important details in how coercive measures are threatened, imposed and removed. The latter processes often have much to do with the domestic politics in sender countries. Understanding these processes may be necessary in order to fully account for sanctions’ effectiveness. We present a natural language processing (NLP) approach to retrieving sanctions-related government documents. We apply our method to the case of US sanctions. The United States is the world’s pre-eminent user of sanctions. Our method can be applied to other cases. We collect all sanctions events originating in the office of the US president, and all congressional sanctions, for 1988–2016. Our approach has three advantages: (1) by design, it captures all sanctions-related documents; (2) the resulting data are disaggregated by imposing branch of government; (3) the data include the original language of the measures. These features directly shed light on interbranch delegation, domestic (partisan) conflict, and policy priorities. We show that our data record more episodes than most existing sanctions’ data, and have features that other datasets lack. The availability of the original text opens up new avenues for research and analysis." @default.
- W4313467582 created "2023-01-06" @default.
- W4313467582 creator A5008572394 @default.
- W4313467582 creator A5034192804 @default.
- W4313467582 creator A5051993472 @default.
- W4313467582 creator A5064977687 @default.
- W4313467582 date "2022-12-21" @default.
- W4313467582 modified "2023-10-17" @default.
- W4313467582 title "SASCAT: Natural language processing approach to the study of economic sanctions" @default.
- W4313467582 cites W1527080373 @default.
- W4313467582 cites W1605143855 @default.
- W4313467582 cites W1894961433 @default.
- W4313467582 cites W1900256016 @default.
- W4313467582 cites W1965192617 @default.
- W4313467582 cites W1967900126 @default.
- W4313467582 cites W1974970490 @default.
- W4313467582 cites W1983566839 @default.
- W4313467582 cites W1994989787 @default.
- W4313467582 cites W2007098051 @default.
- W4313467582 cites W2014115979 @default.
- W4313467582 cites W2045149844 @default.
- W4313467582 cites W2049997112 @default.
- W4313467582 cites W2056559023 @default.
- W4313467582 cites W2060886834 @default.
- W4313467582 cites W2061638622 @default.
- W4313467582 cites W2104523600 @default.
- W4313467582 cites W2105479648 @default.
- W4313467582 cites W2108378466 @default.
- W4313467582 cites W2114222311 @default.
- W4313467582 cites W2122128097 @default.
- W4313467582 cites W2129764416 @default.
- W4313467582 cites W2131377494 @default.
- W4313467582 cites W2141099517 @default.
- W4313467582 cites W2143026309 @default.
- W4313467582 cites W2148281238 @default.
- W4313467582 cites W2153031274 @default.
- W4313467582 cites W2155263310 @default.
- W4313467582 cites W2159559371 @default.
- W4313467582 cites W2162782791 @default.
- W4313467582 cites W2163401359 @default.
- W4313467582 cites W2170661519 @default.
- W4313467582 cites W2171637787 @default.
- W4313467582 cites W2251396759 @default.
- W4313467582 cites W2322576119 @default.
- W4313467582 cites W2378926921 @default.
- W4313467582 cites W2554723367 @default.
- W4313467582 cites W2583344524 @default.
- W4313467582 cites W2736766970 @default.
- W4313467582 cites W2772229643 @default.
- W4313467582 cites W2792699008 @default.
- W4313467582 cites W2808553042 @default.
- W4313467582 cites W2898147564 @default.
- W4313467582 cites W2965085050 @default.
- W4313467582 cites W2965261501 @default.
- W4313467582 cites W2965425066 @default.
- W4313467582 cites W2981671689 @default.
- W4313467582 cites W3004877133 @default.
- W4313467582 cites W3020373968 @default.
- W4313467582 cites W3043055561 @default.
- W4313467582 cites W3047619971 @default.
- W4313467582 cites W3133049598 @default.
- W4313467582 cites W4242386074 @default.
- W4313467582 cites W4243011772 @default.
- W4313467582 cites W4250515878 @default.
- W4313467582 cites W4254889307 @default.
- W4313467582 cites W4298360447 @default.
- W4313467582 cites W4318821084 @default.
- W4313467582 cites W647592009 @default.
- W4313467582 doi "https://doi.org/10.1177/00223433221088712" @default.
- W4313467582 hasPublicationYear "2022" @default.
- W4313467582 type Work @default.
- W4313467582 citedByCount "0" @default.
- W4313467582 crossrefType "journal-article" @default.
- W4313467582 hasAuthorship W4313467582A5008572394 @default.
- W4313467582 hasAuthorship W4313467582A5034192804 @default.
- W4313467582 hasAuthorship W4313467582A5051993472 @default.
- W4313467582 hasAuthorship W4313467582A5064977687 @default.
- W4313467582 hasConcept C105795698 @default.
- W4313467582 hasConcept C138885662 @default.
- W4313467582 hasConcept C17744445 @default.
- W4313467582 hasConcept C198104137 @default.
- W4313467582 hasConcept C199539241 @default.
- W4313467582 hasConcept C2777188754 @default.
- W4313467582 hasConcept C2778069335 @default.
- W4313467582 hasConcept C2778137410 @default.
- W4313467582 hasConcept C2779084495 @default.
- W4313467582 hasConcept C33923547 @default.
- W4313467582 hasConcept C38652104 @default.
- W4313467582 hasConcept C41008148 @default.
- W4313467582 hasConcept C41895202 @default.
- W4313467582 hasConcept C49630185 @default.
- W4313467582 hasConcept C76155785 @default.
- W4313467582 hasConcept C86532276 @default.
- W4313467582 hasConceptScore W4313467582C105795698 @default.
- W4313467582 hasConceptScore W4313467582C138885662 @default.
- W4313467582 hasConceptScore W4313467582C17744445 @default.
- W4313467582 hasConceptScore W4313467582C198104137 @default.
- W4313467582 hasConceptScore W4313467582C199539241 @default.