Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313471196> ?p ?o ?g. }
- W4313471196 endingPage "783" @default.
- W4313471196 startingPage "783" @default.
- W4313471196 abstract "This paper proposes a new, metaheuristic optimization technique, Artificial Gorilla Troops Optimization (GTO), for a hybrid power system with photovoltaic (PV) and wind energy (WE) sources, solving the probabilistic optimum power flow (POPF) issue. First, the selected algorithm is developed and evaluated such that it applies to solve the classical optimum power flow (OPF) approach with the total fuel cost as the objective function. Second, the proposed algorithm is used for solving the POPF, including the PV and WE sources, considering the uncertainty of these renewable energy sources (RESs). The performance of the suggested algorithm was confirmed using the standard test systems IEEE 30-bus and 118-bus. Different scenarios involving different sets of the PV and WE sources and fixed and variable loads were considered in this study. The comparison of the obtained results from the suggested algorithm with other algorithms mentioned in this literature has confirmed the efficiency and performance of the proposed algorithm for providing optimal solutions for a hybrid power system. Furthermore, the results showed that the penetration of the PV and WE sources in the system significantly reduces the total cost of the system." @default.
- W4313471196 created "2023-01-06" @default.
- W4313471196 creator A5006930870 @default.
- W4313471196 creator A5010659601 @default.
- W4313471196 creator A5018510173 @default.
- W4313471196 creator A5019735213 @default.
- W4313471196 creator A5042470467 @default.
- W4313471196 creator A5047750517 @default.
- W4313471196 creator A5059329130 @default.
- W4313471196 creator A5065091499 @default.
- W4313471196 creator A5084329887 @default.
- W4313471196 date "2023-01-01" @default.
- W4313471196 modified "2023-09-29" @default.
- W4313471196 title "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems" @default.
- W4313471196 cites W1524047196 @default.
- W4313471196 cites W1527696706 @default.
- W4313471196 cites W1765350388 @default.
- W4313471196 cites W1964746797 @default.
- W4313471196 cites W1966716856 @default.
- W4313471196 cites W1978378863 @default.
- W4313471196 cites W1981371890 @default.
- W4313471196 cites W1987243715 @default.
- W4313471196 cites W1988227963 @default.
- W4313471196 cites W1988372554 @default.
- W4313471196 cites W2004039557 @default.
- W4313471196 cites W2016764453 @default.
- W4313471196 cites W2017963665 @default.
- W4313471196 cites W2033225140 @default.
- W4313471196 cites W2040725548 @default.
- W4313471196 cites W2040970088 @default.
- W4313471196 cites W2043044702 @default.
- W4313471196 cites W2043110828 @default.
- W4313471196 cites W2057937706 @default.
- W4313471196 cites W2060119605 @default.
- W4313471196 cites W2067291211 @default.
- W4313471196 cites W2076881097 @default.
- W4313471196 cites W2080699696 @default.
- W4313471196 cites W2082484914 @default.
- W4313471196 cites W2103601587 @default.
- W4313471196 cites W2118170298 @default.
- W4313471196 cites W2134299896 @default.
- W4313471196 cites W2134869843 @default.
- W4313471196 cites W2159883961 @default.
- W4313471196 cites W2299619383 @default.
- W4313471196 cites W2309856224 @default.
- W4313471196 cites W2342670544 @default.
- W4313471196 cites W2344471626 @default.
- W4313471196 cites W2469071491 @default.
- W4313471196 cites W2510853569 @default.
- W4313471196 cites W2518394797 @default.
- W4313471196 cites W2566611748 @default.
- W4313471196 cites W2589658036 @default.
- W4313471196 cites W2623451927 @default.
- W4313471196 cites W2626318740 @default.
- W4313471196 cites W2732231689 @default.
- W4313471196 cites W2779897001 @default.
- W4313471196 cites W2802772536 @default.
- W4313471196 cites W2885509708 @default.
- W4313471196 cites W2966618927 @default.
- W4313471196 cites W3014917440 @default.
- W4313471196 cites W3048894475 @default.
- W4313471196 cites W3091791816 @default.
- W4313471196 cites W3094447026 @default.
- W4313471196 cites W3107023852 @default.
- W4313471196 cites W3133027215 @default.
- W4313471196 cites W3150082866 @default.
- W4313471196 cites W3185076117 @default.
- W4313471196 cites W3212275275 @default.
- W4313471196 cites W3213848173 @default.
- W4313471196 cites W4281619621 @default.
- W4313471196 cites W4285495499 @default.
- W4313471196 cites W4292860328 @default.
- W4313471196 doi "https://doi.org/10.3390/su15010783" @default.
- W4313471196 hasPublicationYear "2023" @default.
- W4313471196 type Work @default.
- W4313471196 citedByCount "4" @default.
- W4313471196 countsByYear W43134711962023 @default.
- W4313471196 crossrefType "journal-article" @default.
- W4313471196 hasAuthorship W4313471196A5006930870 @default.
- W4313471196 hasAuthorship W4313471196A5010659601 @default.
- W4313471196 hasAuthorship W4313471196A5018510173 @default.
- W4313471196 hasAuthorship W4313471196A5019735213 @default.
- W4313471196 hasAuthorship W4313471196A5042470467 @default.
- W4313471196 hasAuthorship W4313471196A5047750517 @default.
- W4313471196 hasAuthorship W4313471196A5059329130 @default.
- W4313471196 hasAuthorship W4313471196A5065091499 @default.
- W4313471196 hasAuthorship W4313471196A5084329887 @default.
- W4313471196 hasBestOaLocation W43134711961 @default.
- W4313471196 hasConcept C105795698 @default.
- W4313471196 hasConcept C11413529 @default.
- W4313471196 hasConcept C119599485 @default.
- W4313471196 hasConcept C119857082 @default.
- W4313471196 hasConcept C121332964 @default.
- W4313471196 hasConcept C126255220 @default.
- W4313471196 hasConcept C127413603 @default.
- W4313471196 hasConcept C154945302 @default.
- W4313471196 hasConcept C163258240 @default.
- W4313471196 hasConcept C188573790 @default.