Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313471245> ?p ?o ?g. }
- W4313471245 endingPage "267" @default.
- W4313471245 startingPage "267" @default.
- W4313471245 abstract "Accurate identification and extraction of lake boundaries are the basis of the accurate assessment of lake changes and their responses to climate change. To reduce the effects of lake ice and snow cover, mountain shadows, cloud and fog shielding, alluvial and proluvial deposits, and shoals on the extraction of lake boundaries on the Tibetan Plateau, this study developed an RNSS water index to increase the contrast between the lake and similar surface objects of the spectral curve, and constructed a new method flow for lake extraction on the Tibetan Plateau based on image synthesis, topographic-spectral feature indexes, and machine learning algorithms. The lake extraction effects of three common machine learning classification algorithms were compared: the Cart decision tree, random forest (RF), and gradient boosting decision tree (GBDT). The results show that the new lake extraction method based on topographic-spectral characteristics and the GBDT classification method had the highest extraction accuracy for Tibetan Plateau lakes in 2016 and 2021. Its overall accuracy, Kappa coefficient, user’s accuracy, and producer’s accuracy for 2016 and 2021 were 99.81%, 0.887, 83.55%, 94.67% and 99.88%, 0.933, 89.18%, 98.24%, respectively, and the total area of lake extraction was the most consistent with the validation datasets. The three classification methods can effectively extract lakes covered by ice and snow, and the extraction effect was ranked as GBDT > RF > Cart. The lake extraction effect under mountain shadow was ranked as Cart > GBDT > RF, and the lake extraction effect under alluvial deposits and shoals was ranked as GBDT > RF > Cart. The results may provide technical support for extracting lakes from long time series and reveal the impact of climate change on Tibetan Plateau lakes." @default.
- W4313471245 created "2023-01-06" @default.
- W4313471245 creator A5022469287 @default.
- W4313471245 creator A5031874278 @default.
- W4313471245 creator A5038482238 @default.
- W4313471245 creator A5040270498 @default.
- W4313471245 creator A5060398573 @default.
- W4313471245 creator A5082028572 @default.
- W4313471245 creator A5087176504 @default.
- W4313471245 date "2023-01-02" @default.
- W4313471245 modified "2023-09-26" @default.
- W4313471245 title "Comparison of Lake Extraction and Classification Methods for the Tibetan Plateau Based on Topographic-Spectral Information" @default.
- W4313471245 cites W1509786997 @default.
- W4313471245 cites W1592227560 @default.
- W4313471245 cites W1882187602 @default.
- W4313471245 cites W1988790447 @default.
- W4313471245 cites W1990653740 @default.
- W4313471245 cites W1995581599 @default.
- W4313471245 cites W2000648382 @default.
- W4313471245 cites W2061718511 @default.
- W4313471245 cites W2077509829 @default.
- W4313471245 cites W2084744129 @default.
- W4313471245 cites W2084818612 @default.
- W4313471245 cites W2117060272 @default.
- W4313471245 cites W2134325623 @default.
- W4313471245 cites W2564545777 @default.
- W4313471245 cites W2622632592 @default.
- W4313471245 cites W2725897987 @default.
- W4313471245 cites W2794418686 @default.
- W4313471245 cites W2883901583 @default.
- W4313471245 cites W2885634264 @default.
- W4313471245 cites W2911964244 @default.
- W4313471245 cites W2921004712 @default.
- W4313471245 cites W2951792693 @default.
- W4313471245 cites W2962702674 @default.
- W4313471245 cites W3112988386 @default.
- W4313471245 cites W3134956322 @default.
- W4313471245 cites W3214950806 @default.
- W4313471245 cites W4200514954 @default.
- W4313471245 cites W4212883601 @default.
- W4313471245 cites W4237234234 @default.
- W4313471245 cites W4252423951 @default.
- W4313471245 cites W4283657206 @default.
- W4313471245 doi "https://doi.org/10.3390/rs15010267" @default.
- W4313471245 hasPublicationYear "2023" @default.
- W4313471245 type Work @default.
- W4313471245 citedByCount "0" @default.
- W4313471245 crossrefType "journal-article" @default.
- W4313471245 hasAuthorship W4313471245A5022469287 @default.
- W4313471245 hasAuthorship W4313471245A5031874278 @default.
- W4313471245 hasAuthorship W4313471245A5038482238 @default.
- W4313471245 hasAuthorship W4313471245A5040270498 @default.
- W4313471245 hasAuthorship W4313471245A5060398573 @default.
- W4313471245 hasAuthorship W4313471245A5082028572 @default.
- W4313471245 hasAuthorship W4313471245A5087176504 @default.
- W4313471245 hasBestOaLocation W43134712451 @default.
- W4313471245 hasConcept C100970517 @default.
- W4313471245 hasConcept C119857082 @default.
- W4313471245 hasConcept C127313418 @default.
- W4313471245 hasConcept C127413603 @default.
- W4313471245 hasConcept C134306372 @default.
- W4313471245 hasConcept C147176958 @default.
- W4313471245 hasConcept C154945302 @default.
- W4313471245 hasConcept C163864269 @default.
- W4313471245 hasConcept C166957645 @default.
- W4313471245 hasConcept C185592680 @default.
- W4313471245 hasConcept C205649164 @default.
- W4313471245 hasConcept C2777275308 @default.
- W4313471245 hasConcept C2778395939 @default.
- W4313471245 hasConcept C2780030769 @default.
- W4313471245 hasConcept C2780648208 @default.
- W4313471245 hasConcept C33923547 @default.
- W4313471245 hasConcept C39432304 @default.
- W4313471245 hasConcept C41008148 @default.
- W4313471245 hasConcept C43617362 @default.
- W4313471245 hasConcept C4725764 @default.
- W4313471245 hasConcept C4792198 @default.
- W4313471245 hasConcept C62649853 @default.
- W4313471245 hasConceptScore W4313471245C100970517 @default.
- W4313471245 hasConceptScore W4313471245C119857082 @default.
- W4313471245 hasConceptScore W4313471245C127313418 @default.
- W4313471245 hasConceptScore W4313471245C127413603 @default.
- W4313471245 hasConceptScore W4313471245C134306372 @default.
- W4313471245 hasConceptScore W4313471245C147176958 @default.
- W4313471245 hasConceptScore W4313471245C154945302 @default.
- W4313471245 hasConceptScore W4313471245C163864269 @default.
- W4313471245 hasConceptScore W4313471245C166957645 @default.
- W4313471245 hasConceptScore W4313471245C185592680 @default.
- W4313471245 hasConceptScore W4313471245C205649164 @default.
- W4313471245 hasConceptScore W4313471245C2777275308 @default.
- W4313471245 hasConceptScore W4313471245C2778395939 @default.
- W4313471245 hasConceptScore W4313471245C2780030769 @default.
- W4313471245 hasConceptScore W4313471245C2780648208 @default.
- W4313471245 hasConceptScore W4313471245C33923547 @default.
- W4313471245 hasConceptScore W4313471245C39432304 @default.
- W4313471245 hasConceptScore W4313471245C41008148 @default.
- W4313471245 hasConceptScore W4313471245C43617362 @default.
- W4313471245 hasConceptScore W4313471245C4725764 @default.