Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313472068> ?p ?o ?g. }
- W4313472068 endingPage "5" @default.
- W4313472068 startingPage "5" @default.
- W4313472068 abstract "Considering the increasing number of experimental results in the manufacturing process of quantum dots (QDs) with different geometries, and the fact that most numerical methods that can be used to investigate quantum dots with nontrivial geometries require large computational capacities, the finite element method (FEM) becomes an incredibly attractive tool for modeling semiconductor QDs. In the current article, we used FEM to obtain the first twenty-six probability densities and energy values for the following GaAs structures: rectangular, spherical, cylindrical, ellipsoidal, spheroidal, and conical QDs, as well as quantum rings, nanotadpoles, and nanostars. The results of the numerical calculations were compared with the exact analytical solutions and a good deviation was obtained. The ground-state energy dependence on the element size was obtained to find the optimal parameter for the investigated structures. The abovementioned calculation results were used to obtain valuable insight into the effects of the size quantization’s dependence on the shape of the QDs. Additionally, the wavefunctions and energies of spherical CdSe/CdS quantum dots were obtained while taking into account the diffusion effects on the potential depth with the use of a piecewise Woods–Saxon potential. The diffusion of the effective mass and the dielectric permittivity was obtained with the use of a normal Woods–Saxon potential. A structure with a quasi-type-II band alignment was obtained at the core size of ≈2.2 nm This result is consistent with the experimental data." @default.
- W4313472068 created "2023-01-06" @default.
- W4313472068 creator A5024781321 @default.
- W4313472068 creator A5048166104 @default.
- W4313472068 creator A5088587840 @default.
- W4313472068 date "2023-01-02" @default.
- W4313472068 modified "2023-09-30" @default.
- W4313472068 title "Modeling of Quantum Dots with the Finite Element Method" @default.
- W4313472068 cites W1989118399 @default.
- W4313472068 cites W1992093882 @default.
- W4313472068 cites W2005543248 @default.
- W4313472068 cites W2008991061 @default.
- W4313472068 cites W2039175322 @default.
- W4313472068 cites W2043070200 @default.
- W4313472068 cites W2053395768 @default.
- W4313472068 cites W2058183081 @default.
- W4313472068 cites W2083432861 @default.
- W4313472068 cites W2103637050 @default.
- W4313472068 cites W2165324630 @default.
- W4313472068 cites W2294318489 @default.
- W4313472068 cites W2318973713 @default.
- W4313472068 cites W2501641075 @default.
- W4313472068 cites W2563170994 @default.
- W4313472068 cites W2771263447 @default.
- W4313472068 cites W2808835362 @default.
- W4313472068 cites W2889516617 @default.
- W4313472068 cites W2891663655 @default.
- W4313472068 cites W2904535227 @default.
- W4313472068 cites W2918375990 @default.
- W4313472068 cites W2927330361 @default.
- W4313472068 cites W2943930799 @default.
- W4313472068 cites W2944339211 @default.
- W4313472068 cites W2964836606 @default.
- W4313472068 cites W2980761834 @default.
- W4313472068 cites W2993136830 @default.
- W4313472068 cites W2999980307 @default.
- W4313472068 cites W3005849904 @default.
- W4313472068 cites W3014876642 @default.
- W4313472068 cites W3024112824 @default.
- W4313472068 cites W3029770002 @default.
- W4313472068 cites W3034447967 @default.
- W4313472068 cites W3047191857 @default.
- W4313472068 cites W3095591439 @default.
- W4313472068 cites W3098644799 @default.
- W4313472068 cites W3103121250 @default.
- W4313472068 cites W3112445747 @default.
- W4313472068 cites W3114311317 @default.
- W4313472068 cites W3116238715 @default.
- W4313472068 cites W3118982264 @default.
- W4313472068 cites W3119895342 @default.
- W4313472068 cites W3120875442 @default.
- W4313472068 cites W3123476836 @default.
- W4313472068 cites W3126068411 @default.
- W4313472068 cites W3134832552 @default.
- W4313472068 cites W3135827227 @default.
- W4313472068 cites W3162896931 @default.
- W4313472068 cites W3180214111 @default.
- W4313472068 cites W3185681638 @default.
- W4313472068 cites W3189120748 @default.
- W4313472068 cites W3193214518 @default.
- W4313472068 cites W3195014193 @default.
- W4313472068 cites W3195315721 @default.
- W4313472068 cites W3195862557 @default.
- W4313472068 cites W3200016104 @default.
- W4313472068 cites W3202582319 @default.
- W4313472068 cites W3204926311 @default.
- W4313472068 cites W3205730567 @default.
- W4313472068 cites W3211087266 @default.
- W4313472068 cites W3213407177 @default.
- W4313472068 cites W3214881849 @default.
- W4313472068 cites W3216093051 @default.
- W4313472068 cites W3217688300 @default.
- W4313472068 cites W4200332080 @default.
- W4313472068 cites W4200518421 @default.
- W4313472068 cites W4205739638 @default.
- W4313472068 cites W4206160768 @default.
- W4313472068 cites W4226483984 @default.
- W4313472068 cites W4280552182 @default.
- W4313472068 cites W4283790696 @default.
- W4313472068 cites W4283819311 @default.
- W4313472068 cites W4288080547 @default.
- W4313472068 cites W4288430687 @default.
- W4313472068 cites W4288721489 @default.
- W4313472068 cites W4297372670 @default.
- W4313472068 doi "https://doi.org/10.3390/computation11010005" @default.
- W4313472068 hasPublicationYear "2023" @default.
- W4313472068 type Work @default.
- W4313472068 citedByCount "5" @default.
- W4313472068 countsByYear W43134720682023 @default.
- W4313472068 crossrefType "journal-article" @default.
- W4313472068 hasAuthorship W4313472068A5024781321 @default.
- W4313472068 hasAuthorship W4313472068A5048166104 @default.
- W4313472068 hasAuthorship W4313472068A5088587840 @default.
- W4313472068 hasBestOaLocation W43134720681 @default.
- W4313472068 hasConcept C113603373 @default.
- W4313472068 hasConcept C11413529 @default.
- W4313472068 hasConcept C121332964 @default.
- W4313472068 hasConcept C124657808 @default.