Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313472324> ?p ?o ?g. }
- W4313472324 endingPage "784" @default.
- W4313472324 startingPage "784" @default.
- W4313472324 abstract "In the petroleum industry, artificial intelligence has been applied in seismic and logging interpretation, accurate modeling, optimized drilling operations, well dynamics prediction, safety warning, etc. However, field-scale application and deployment remain a challenge due to the lack of sufficiently powerful algorithms for the integration of multi-granularity data in the time and space domain, for the construction of a deep-learning network able to represent the evolution of well and reservoir dynamics, and finally the lack of investment in surveillance data acquisition. This paper offers a concise review of smart field deployment for mature waterflood reservoirs, including the current status of data foundation construction, and the research progress for applied AI algorithms, as well as application scenarios and overall deployment. With respect to data, the domestic and international oil and gas industry has completed or at least started the large-scale construction and deployment of lake data. However, the data isolation phenomenon is serious in China. Preparation for the integration of new monitoring data for the overall research of reservoirs is insufficient. With respect to algorithms, data-based and model-based AI algorithms have been emerging recently, but the development of the overall proxy model for rapid prediction and automatic model calibration is still in the preliminary period. For application scenarios, relatively simple and independent applications related to geophysical interpretation and production engineering are continuing to emerge, while large-scale reservoir and field application require substantial investment in data acquisition, game-changing algorithms with cloud-based computing architecture, and top-down deployment." @default.
- W4313472324 created "2023-01-06" @default.
- W4313472324 creator A5003991715 @default.
- W4313472324 creator A5019788784 @default.
- W4313472324 creator A5053309917 @default.
- W4313472324 creator A5082559593 @default.
- W4313472324 creator A5072840487 @default.
- W4313472324 date "2023-01-01" @default.
- W4313472324 modified "2023-10-01" @default.
- W4313472324 title "Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs" @default.
- W4313472324 cites W1135052863 @default.
- W4313472324 cites W1759920278 @default.
- W4313472324 cites W1965213941 @default.
- W4313472324 cites W1965775669 @default.
- W4313472324 cites W1969537712 @default.
- W4313472324 cites W1982290494 @default.
- W4313472324 cites W1988872906 @default.
- W4313472324 cites W1994370826 @default.
- W4313472324 cites W1994812162 @default.
- W4313472324 cites W2000769192 @default.
- W4313472324 cites W2008179957 @default.
- W4313472324 cites W2009104157 @default.
- W4313472324 cites W2011328014 @default.
- W4313472324 cites W2016875121 @default.
- W4313472324 cites W2018353504 @default.
- W4313472324 cites W2025130584 @default.
- W4313472324 cites W2031172850 @default.
- W4313472324 cites W2035334832 @default.
- W4313472324 cites W2044740174 @default.
- W4313472324 cites W2045469795 @default.
- W4313472324 cites W2046372107 @default.
- W4313472324 cites W2056986886 @default.
- W4313472324 cites W2058051865 @default.
- W4313472324 cites W2076859781 @default.
- W4313472324 cites W2078327207 @default.
- W4313472324 cites W2086560643 @default.
- W4313472324 cites W2087570443 @default.
- W4313472324 cites W2088175378 @default.
- W4313472324 cites W2094470710 @default.
- W4313472324 cites W2096379280 @default.
- W4313472324 cites W2098550720 @default.
- W4313472324 cites W2098597588 @default.
- W4313472324 cites W2125416623 @default.
- W4313472324 cites W2132681396 @default.
- W4313472324 cites W2139550494 @default.
- W4313472324 cites W2139626955 @default.
- W4313472324 cites W2148411410 @default.
- W4313472324 cites W2154121441 @default.
- W4313472324 cites W2158677776 @default.
- W4313472324 cites W2164503247 @default.
- W4313472324 cites W2167945806 @default.
- W4313472324 cites W2172996688 @default.
- W4313472324 cites W2175831986 @default.
- W4313472324 cites W2318158792 @default.
- W4313472324 cites W2320521049 @default.
- W4313472324 cites W2464366281 @default.
- W4313472324 cites W2532120640 @default.
- W4313472324 cites W2578398986 @default.
- W4313472324 cites W2581526618 @default.
- W4313472324 cites W2581984441 @default.
- W4313472324 cites W2600855320 @default.
- W4313472324 cites W2748910161 @default.
- W4313472324 cites W2765513021 @default.
- W4313472324 cites W2769142751 @default.
- W4313472324 cites W2784046638 @default.
- W4313472324 cites W2784733489 @default.
- W4313472324 cites W2888006154 @default.
- W4313472324 cites W2890942567 @default.
- W4313472324 cites W2891968093 @default.
- W4313472324 cites W2896275399 @default.
- W4313472324 cites W2900471328 @default.
- W4313472324 cites W2908541468 @default.
- W4313472324 cites W2914046321 @default.
- W4313472324 cites W2917865470 @default.
- W4313472324 cites W2930688509 @default.
- W4313472324 cites W2934712693 @default.
- W4313472324 cites W2943571340 @default.
- W4313472324 cites W2949265864 @default.
- W4313472324 cites W2950337752 @default.
- W4313472324 cites W2958042318 @default.
- W4313472324 cites W2962788560 @default.
- W4313472324 cites W2963015017 @default.
- W4313472324 cites W2963073614 @default.
- W4313472324 cites W2963162215 @default.
- W4313472324 cites W2963276185 @default.
- W4313472324 cites W2965326702 @default.
- W4313472324 cites W2969395562 @default.
- W4313472324 cites W2974287515 @default.
- W4313472324 cites W2991081473 @default.
- W4313472324 cites W2995511918 @default.
- W4313472324 cites W2996100742 @default.
- W4313472324 cites W3014469433 @default.
- W4313472324 cites W3016895690 @default.
- W4313472324 cites W3026922459 @default.
- W4313472324 cites W3036003775 @default.
- W4313472324 cites W3036771624 @default.
- W4313472324 cites W3038550217 @default.
- W4313472324 cites W3044355331 @default.