Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313473105> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313473105 endingPage "243" @default.
- W4313473105 startingPage "243" @default.
- W4313473105 abstract "Multispectral LiDAR technology can simultaneously acquire spatial geometric data and multispectral wavelength intensity information, which can provide richer attribute features for semantic segmentation of point cloud scenes. However, due to the disordered distribution and huge number of point clouds, it is still a challenging task to accomplish fine-grained semantic segmentation of point clouds from large-scale multispectral LiDAR data. To deal with this situation, we propose a deep learning network that can leverage contextual semantic information to complete the semantic segmentation of large-scale point clouds. In our network, we work on fusing local geometry and feature content based on 3D spatial geometric associativity and embed it into a backbone network. In addition, to cope with the problem of redundant point cloud feature distribution found in the experiment, we designed a data preprocessing with principal component extraction to improve the processing capability of the proposed network on the applied multispectral LiDAR data. Finally, we conduct a series of comparative experiments using multispectral LiDAR point clouds of real land cover in order to objectively evaluate the performance of the proposed method compared with other advanced methods. With the obtained results, we confirm that the proposed method achieves satisfactory results in real point cloud semantic segmentation. Moreover, the quantitative evaluation metrics show that it reaches state-of-the-art." @default.
- W4313473105 created "2023-01-06" @default.
- W4313473105 creator A5020604701 @default.
- W4313473105 creator A5029430856 @default.
- W4313473105 creator A5043043084 @default.
- W4313473105 creator A5062506580 @default.
- W4313473105 date "2022-12-31" @default.
- W4313473105 modified "2023-10-17" @default.
- W4313473105 title "Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network" @default.
- W4313473105 cites W1541521713 @default.
- W4313473105 cites W1616750657 @default.
- W4313473105 cites W1916388061 @default.
- W4313473105 cites W2004243836 @default.
- W4313473105 cites W2093117862 @default.
- W4313473105 cites W2102544846 @default.
- W4313473105 cites W2169783907 @default.
- W4313473105 cites W2292974565 @default.
- W4313473105 cites W2395611524 @default.
- W4313473105 cites W2555624569 @default.
- W4313473105 cites W2606520626 @default.
- W4313473105 cites W2608675201 @default.
- W4313473105 cites W2614059183 @default.
- W4313473105 cites W2724542434 @default.
- W4313473105 cites W2795014656 @default.
- W4313473105 cites W2807072713 @default.
- W4313473105 cites W2888754481 @default.
- W4313473105 cites W2937816158 @default.
- W4313473105 cites W2965457644 @default.
- W4313473105 cites W2990613095 @default.
- W4313473105 cites W2991284067 @default.
- W4313473105 cites W3003437478 @default.
- W4313473105 cites W3010797203 @default.
- W4313473105 cites W3012494314 @default.
- W4313473105 cites W3016245793 @default.
- W4313473105 cites W3039448353 @default.
- W4313473105 cites W3048631361 @default.
- W4313473105 cites W3080762129 @default.
- W4313473105 cites W3104038589 @default.
- W4313473105 cites W3128555787 @default.
- W4313473105 cites W3174562789 @default.
- W4313473105 cites W3199180238 @default.
- W4313473105 cites W3205684057 @default.
- W4313473105 cites W4220658696 @default.
- W4313473105 cites W4286644658 @default.
- W4313473105 cites W4292451836 @default.
- W4313473105 doi "https://doi.org/10.3390/rs15010243" @default.
- W4313473105 hasPublicationYear "2022" @default.
- W4313473105 type Work @default.
- W4313473105 citedByCount "0" @default.
- W4313473105 crossrefType "journal-article" @default.
- W4313473105 hasAuthorship W4313473105A5020604701 @default.
- W4313473105 hasAuthorship W4313473105A5029430856 @default.
- W4313473105 hasAuthorship W4313473105A5043043084 @default.
- W4313473105 hasAuthorship W4313473105A5062506580 @default.
- W4313473105 hasBestOaLocation W43134731051 @default.
- W4313473105 hasConcept C124101348 @default.
- W4313473105 hasConcept C131979681 @default.
- W4313473105 hasConcept C153180895 @default.
- W4313473105 hasConcept C154945302 @default.
- W4313473105 hasConcept C173163844 @default.
- W4313473105 hasConcept C205649164 @default.
- W4313473105 hasConcept C31972630 @default.
- W4313473105 hasConcept C41008148 @default.
- W4313473105 hasConcept C51399673 @default.
- W4313473105 hasConcept C62649853 @default.
- W4313473105 hasConcept C89600930 @default.
- W4313473105 hasConceptScore W4313473105C124101348 @default.
- W4313473105 hasConceptScore W4313473105C131979681 @default.
- W4313473105 hasConceptScore W4313473105C153180895 @default.
- W4313473105 hasConceptScore W4313473105C154945302 @default.
- W4313473105 hasConceptScore W4313473105C173163844 @default.
- W4313473105 hasConceptScore W4313473105C205649164 @default.
- W4313473105 hasConceptScore W4313473105C31972630 @default.
- W4313473105 hasConceptScore W4313473105C41008148 @default.
- W4313473105 hasConceptScore W4313473105C51399673 @default.
- W4313473105 hasConceptScore W4313473105C62649853 @default.
- W4313473105 hasConceptScore W4313473105C89600930 @default.
- W4313473105 hasFunder F4320321001 @default.
- W4313473105 hasIssue "1" @default.
- W4313473105 hasLocation W43134731051 @default.
- W4313473105 hasLocation W43134731052 @default.
- W4313473105 hasOpenAccess W4313473105 @default.
- W4313473105 hasPrimaryLocation W43134731051 @default.
- W4313473105 hasRelatedWork W1916388061 @default.
- W4313473105 hasRelatedWork W2006750359 @default.
- W4313473105 hasRelatedWork W2045118021 @default.
- W4313473105 hasRelatedWork W2070510131 @default.
- W4313473105 hasRelatedWork W2162498776 @default.
- W4313473105 hasRelatedWork W2768326488 @default.
- W4313473105 hasRelatedWork W2773765744 @default.
- W4313473105 hasRelatedWork W2900835529 @default.
- W4313473105 hasRelatedWork W2960267326 @default.
- W4313473105 hasRelatedWork W3000058646 @default.
- W4313473105 hasVolume "15" @default.
- W4313473105 isParatext "false" @default.
- W4313473105 isRetracted "false" @default.
- W4313473105 workType "article" @default.