Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313473147> ?p ?o ?g. }
- W4313473147 endingPage "224" @default.
- W4313473147 startingPage "224" @default.
- W4313473147 abstract "Accurate and real-time forecasting of the price of oil plays an important role in the world economy. Research interest in forecasting this type of time series has increased considerably in recent decades, since, due to the characteristics of the time series, it was a complicated task with inaccurate results. Concretely, deep learning models such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have appeared in this field with promising results compared to traditional approaches. To improve the performance of existing networks in time series forecasting, in this work two types of neural networks are brought together, combining the characteristics of a Graph Convolutional Network (GCN) and a Bidirectional Long Short-Term Memory (BiLSTM) network. This is a novel evolution that improves existing results in the literature and provides new possibilities in the analysis of time series. The results confirm a better performance of the combined BiLSTM-GCN approach compared to the BiLSTM and GCN models separately, as well as to the traditional models, with a lower error in all the error metrics used: the Root Mean Squared Error (RMSE), the Mean Squared Error (MSE), the Mean Absolute Percentage Error (MAPE) and the R-squared (R2). These results represent a smaller difference between the result returned by the model and the real value and, therefore, a greater precision in the predictions of this model." @default.
- W4313473147 created "2023-01-06" @default.
- W4313473147 creator A5022265705 @default.
- W4313473147 creator A5082959339 @default.
- W4313473147 creator A5091239775 @default.
- W4313473147 date "2023-01-02" @default.
- W4313473147 modified "2023-10-09" @default.
- W4313473147 title "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting" @default.
- W4313473147 cites W1498436455 @default.
- W4313473147 cites W1586335931 @default.
- W4313473147 cites W1970070532 @default.
- W4313473147 cites W1972581513 @default.
- W4313473147 cites W1972732865 @default.
- W4313473147 cites W1982348007 @default.
- W4313473147 cites W1982980578 @default.
- W4313473147 cites W2009591042 @default.
- W4313473147 cites W2016944307 @default.
- W4313473147 cites W2055538060 @default.
- W4313473147 cites W2064675550 @default.
- W4313473147 cites W2088203270 @default.
- W4313473147 cites W2097580026 @default.
- W4313473147 cites W2100495367 @default.
- W4313473147 cites W2102492019 @default.
- W4313473147 cites W2111292279 @default.
- W4313473147 cites W2113173022 @default.
- W4313473147 cites W2116341502 @default.
- W4313473147 cites W2117014758 @default.
- W4313473147 cites W2119777970 @default.
- W4313473147 cites W2123513648 @default.
- W4313473147 cites W2136848157 @default.
- W4313473147 cites W2137983211 @default.
- W4313473147 cites W2146552111 @default.
- W4313473147 cites W2149921893 @default.
- W4313473147 cites W2153513200 @default.
- W4313473147 cites W2154326182 @default.
- W4313473147 cites W2158076175 @default.
- W4313473147 cites W2162711739 @default.
- W4313473147 cites W2166681504 @default.
- W4313473147 cites W2282741897 @default.
- W4313473147 cites W2514033443 @default.
- W4313473147 cites W2546302380 @default.
- W4313473147 cites W2766606194 @default.
- W4313473147 cites W2884447769 @default.
- W4313473147 cites W2899037356 @default.
- W4313473147 cites W2901504064 @default.
- W4313473147 cites W2958225319 @default.
- W4313473147 cites W2991205212 @default.
- W4313473147 cites W3004332271 @default.
- W4313473147 cites W3007066689 @default.
- W4313473147 cites W3007075806 @default.
- W4313473147 cites W3009650506 @default.
- W4313473147 cites W3015616869 @default.
- W4313473147 cites W3080253043 @default.
- W4313473147 cites W3121822240 @default.
- W4313473147 cites W3123909522 @default.
- W4313473147 cites W3137262131 @default.
- W4313473147 cites W3140954298 @default.
- W4313473147 cites W3152893301 @default.
- W4313473147 cites W3196309715 @default.
- W4313473147 cites W3201401232 @default.
- W4313473147 cites W3205902290 @default.
- W4313473147 cites W3215602957 @default.
- W4313473147 cites W4210257598 @default.
- W4313473147 cites W4210496140 @default.
- W4313473147 cites W4213165807 @default.
- W4313473147 cites W4220977700 @default.
- W4313473147 cites W4224221902 @default.
- W4313473147 cites W4282840064 @default.
- W4313473147 cites W4283032241 @default.
- W4313473147 cites W4296519619 @default.
- W4313473147 doi "https://doi.org/10.3390/math11010224" @default.
- W4313473147 hasPublicationYear "2023" @default.
- W4313473147 type Work @default.
- W4313473147 citedByCount "11" @default.
- W4313473147 countsByYear W43134731472023 @default.
- W4313473147 crossrefType "journal-article" @default.
- W4313473147 hasAuthorship W4313473147A5022265705 @default.
- W4313473147 hasAuthorship W4313473147A5082959339 @default.
- W4313473147 hasAuthorship W4313473147A5091239775 @default.
- W4313473147 hasBestOaLocation W43134731471 @default.
- W4313473147 hasConcept C105795698 @default.
- W4313473147 hasConcept C119857082 @default.
- W4313473147 hasConcept C132525143 @default.
- W4313473147 hasConcept C139945424 @default.
- W4313473147 hasConcept C143724316 @default.
- W4313473147 hasConcept C147168706 @default.
- W4313473147 hasConcept C150217764 @default.
- W4313473147 hasConcept C151406439 @default.
- W4313473147 hasConcept C151730666 @default.
- W4313473147 hasConcept C154945302 @default.
- W4313473147 hasConcept C188154048 @default.
- W4313473147 hasConcept C33923547 @default.
- W4313473147 hasConcept C41008148 @default.
- W4313473147 hasConcept C50644808 @default.
- W4313473147 hasConcept C80444323 @default.
- W4313473147 hasConcept C81363708 @default.
- W4313473147 hasConcept C86803240 @default.
- W4313473147 hasConceptScore W4313473147C105795698 @default.