Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313477119> ?p ?o ?g. }
- W4313477119 abstract "It is important to explore the correlation characteristics of land markets among cities in order to promote coordinated developments. Based on the residential land prices in 168 counties in Hebei Province, this study used spatial econometric models and social network analysis to analyze the regional correlation effect and network structure evolution characteristics of residential land prices. The results indicated that: 1) the regional residential land price level has significant global spatial autocorrelation and local autocorrelation. High-High clusters were concentrated in cities around Beijing and Tianjin and provincial capitals, while Low-Low clusters were mostly distributed in central and southern Hebei. 2) The direct effect and spillover effect of influencing factors of residential land price were significantly different. The residents’ purchasing power, the socioeconomic level, and the land resources had significant impacts on the residential land price of the county itself, while the level of infrastructure and the policy environment had significant impacts on the residential land price of neighboring counties. 3) The degree centrality and betweenness centrality of residential land price in central counties of Hebei Province was generally high, showing a trend of agglomeration. However, the peripheral cities of Hebei Province lacked important central nodes in the network structure. From 2013 to 2020, increasing numbers of counties had shown the transmission function of “bridge,” and the balance of land price in the whole region had been constantly improved. The study found that the regional residential land price itself had spatial autocorrelation, and the spillover effect of its related factors was also the driving force that affects the transmission and diffusion of land price between counties. The change in the spatial network of county residential land price was primarily manifested in the transmission process starting from the central cities. The tightness of the spatial network was related to the number and distribution of central nodes. Hebei Province should focus on cultivating urban central nodes with development potential in marginal areas, create more land market growth poles according to local conditions, and accelerate the integration of land factor markets in Beijing, Tianjin, and Hebei to achieve healthy and balanced development of residential land prices. This study made up for the shortcomings of previous studies on land price correlations. The combination of correlation feature analysis and spatial network structure analysis was more helpful to reveal the characteristics of regional land price development, and the results could provide a reference for the formulation of urban land market regulation policies." @default.
- W4313477119 created "2023-01-06" @default.
- W4313477119 creator A5001698371 @default.
- W4313477119 creator A5003799076 @default.
- W4313477119 creator A5011065863 @default.
- W4313477119 creator A5053561421 @default.
- W4313477119 creator A5070746650 @default.
- W4313477119 creator A5089412149 @default.
- W4313477119 creator A5091410055 @default.
- W4313477119 date "2023-01-04" @default.
- W4313477119 modified "2023-09-30" @default.
- W4313477119 title "Exploration of the regional correlation and network structure characteristics of land prices: A case study of Hebei, China" @default.
- W4313477119 cites W1598151839 @default.
- W4313477119 cites W1598819737 @default.
- W4313477119 cites W1972257597 @default.
- W4313477119 cites W1976228697 @default.
- W4313477119 cites W1986989791 @default.
- W4313477119 cites W2023551475 @default.
- W4313477119 cites W2063857894 @default.
- W4313477119 cites W2077498218 @default.
- W4313477119 cites W2097996192 @default.
- W4313477119 cites W2111616256 @default.
- W4313477119 cites W2145859018 @default.
- W4313477119 cites W2159449318 @default.
- W4313477119 cites W2274824582 @default.
- W4313477119 cites W2411761736 @default.
- W4313477119 cites W2576199380 @default.
- W4313477119 cites W2781671169 @default.
- W4313477119 cites W2884584152 @default.
- W4313477119 cites W2905133663 @default.
- W4313477119 cites W2974328972 @default.
- W4313477119 cites W2977520759 @default.
- W4313477119 cites W2987907064 @default.
- W4313477119 cites W2998582428 @default.
- W4313477119 cites W3000585619 @default.
- W4313477119 cites W3004566534 @default.
- W4313477119 cites W3017318336 @default.
- W4313477119 cites W3093032888 @default.
- W4313477119 cites W3094038841 @default.
- W4313477119 cites W3114002827 @default.
- W4313477119 cites W3127856964 @default.
- W4313477119 cites W3137740497 @default.
- W4313477119 cites W3139741344 @default.
- W4313477119 cites W3144074138 @default.
- W4313477119 cites W3181226992 @default.
- W4313477119 cites W3187658931 @default.
- W4313477119 cites W3213918020 @default.
- W4313477119 cites W3214285542 @default.
- W4313477119 cites W3214780812 @default.
- W4313477119 cites W3217590427 @default.
- W4313477119 cites W4200322507 @default.
- W4313477119 cites W4301651410 @default.
- W4313477119 cites W4302368947 @default.
- W4313477119 doi "https://doi.org/10.3389/fenvs.2022.1056042" @default.
- W4313477119 hasPublicationYear "2023" @default.
- W4313477119 type Work @default.
- W4313477119 citedByCount "1" @default.
- W4313477119 countsByYear W43134771192023 @default.
- W4313477119 crossrefType "journal-article" @default.
- W4313477119 hasAuthorship W4313477119A5001698371 @default.
- W4313477119 hasAuthorship W4313477119A5003799076 @default.
- W4313477119 hasAuthorship W4313477119A5011065863 @default.
- W4313477119 hasAuthorship W4313477119A5053561421 @default.
- W4313477119 hasAuthorship W4313477119A5070746650 @default.
- W4313477119 hasAuthorship W4313477119A5089412149 @default.
- W4313477119 hasAuthorship W4313477119A5091410055 @default.
- W4313477119 hasBestOaLocation W43134771191 @default.
- W4313477119 hasConcept C114614502 @default.
- W4313477119 hasConcept C144133560 @default.
- W4313477119 hasConcept C159620131 @default.
- W4313477119 hasConcept C162324750 @default.
- W4313477119 hasConcept C166957645 @default.
- W4313477119 hasConcept C175444787 @default.
- W4313477119 hasConcept C175605778 @default.
- W4313477119 hasConcept C18903297 @default.
- W4313477119 hasConcept C191935318 @default.
- W4313477119 hasConcept C205649164 @default.
- W4313477119 hasConcept C26271046 @default.
- W4313477119 hasConcept C2778304055 @default.
- W4313477119 hasConcept C33923547 @default.
- W4313477119 hasConcept C4792198 @default.
- W4313477119 hasConcept C48824518 @default.
- W4313477119 hasConcept C53811970 @default.
- W4313477119 hasConcept C55527203 @default.
- W4313477119 hasConcept C62649853 @default.
- W4313477119 hasConcept C86803240 @default.
- W4313477119 hasConceptScore W4313477119C114614502 @default.
- W4313477119 hasConceptScore W4313477119C144133560 @default.
- W4313477119 hasConceptScore W4313477119C159620131 @default.
- W4313477119 hasConceptScore W4313477119C162324750 @default.
- W4313477119 hasConceptScore W4313477119C166957645 @default.
- W4313477119 hasConceptScore W4313477119C175444787 @default.
- W4313477119 hasConceptScore W4313477119C175605778 @default.
- W4313477119 hasConceptScore W4313477119C18903297 @default.
- W4313477119 hasConceptScore W4313477119C191935318 @default.
- W4313477119 hasConceptScore W4313477119C205649164 @default.
- W4313477119 hasConceptScore W4313477119C26271046 @default.
- W4313477119 hasConceptScore W4313477119C2778304055 @default.
- W4313477119 hasConceptScore W4313477119C33923547 @default.
- W4313477119 hasConceptScore W4313477119C4792198 @default.