Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313477303> ?p ?o ?g. }
- W4313477303 endingPage "6292" @default.
- W4313477303 startingPage "6284" @default.
- W4313477303 abstract "In Machine learning and pattern recognition, building a better predictive model is one of the key problems in the presence of big or massive data; especially, if that data contains noisy and unrepresentative data samples. These types of samples adversely affect the learning model and may degrade its performance. To alleviate this problem, sometimes, it becomes necessary to sample the data after eliminating unnecessary instances by maintaining the underlying distribution intact. This process is called sampling or instance selection (IS). However, in this process, a substantial computational cost is involved. This paper discusses an uncertainty based optimal sample selection (UBOSS) method which can select a subset of optimal samples efficiently. Our proposed work comprises three main steps; initially, it uses an IS method to identify the patterns of representative and unrepresentative samples from the original data set; then, an uncertainty-based selector is designed to obtain fuzziness (i.e., a type of uncertainty) of those samples using a classifier whose output is a membership or fuzzy vector; this process further utilizes the divide-and-conquer strategy to obtain a subset of representative samples. Experiments are conducted on six datasets to evaluate the performance of the proposed IS method. Results show that our proposed methodology outperforms when compared with the selection performance (i.e., optimum samples) of the baseline methods (i.e., CNN, IB3, and DROP3)." @default.
- W4313477303 created "2023-01-06" @default.
- W4313477303 creator A5033330630 @default.
- W4313477303 creator A5044645122 @default.
- W4313477303 date "2023-01-01" @default.
- W4313477303 modified "2023-10-14" @default.
- W4313477303 title "Uncertainty Based Optimal Sample Selection for Big Data" @default.
- W4313477303 cites W1497422232 @default.
- W4313477303 cites W1513874326 @default.
- W4313477303 cites W1666541006 @default.
- W4313477303 cites W1968933949 @default.
- W4313477303 cites W1983734765 @default.
- W4313477303 cites W1994410331 @default.
- W4313477303 cites W1999501864 @default.
- W4313477303 cites W2004992275 @default.
- W4313477303 cites W2011762057 @default.
- W4313477303 cites W2014403077 @default.
- W4313477303 cites W2015487637 @default.
- W4313477303 cites W2020386741 @default.
- W4313477303 cites W2040121225 @default.
- W4313477303 cites W2068514419 @default.
- W4313477303 cites W2074148701 @default.
- W4313477303 cites W2088598596 @default.
- W4313477303 cites W2107686700 @default.
- W4313477303 cites W2122111042 @default.
- W4313477303 cites W2122496402 @default.
- W4313477303 cites W2139377411 @default.
- W4313477303 cites W2151537585 @default.
- W4313477303 cites W2168873314 @default.
- W4313477303 cites W2210303234 @default.
- W4313477303 cites W2267926141 @default.
- W4313477303 cites W2460208041 @default.
- W4313477303 cites W2468539463 @default.
- W4313477303 cites W2516004608 @default.
- W4313477303 cites W2560528144 @default.
- W4313477303 cites W2605047235 @default.
- W4313477303 cites W2734577020 @default.
- W4313477303 cites W2948646149 @default.
- W4313477303 cites W2963534543 @default.
- W4313477303 cites W3027165530 @default.
- W4313477303 cites W3113978877 @default.
- W4313477303 cites W3127089221 @default.
- W4313477303 cites W4206975766 @default.
- W4313477303 cites W4211007335 @default.
- W4313477303 cites W4244238212 @default.
- W4313477303 cites W4252861488 @default.
- W4313477303 cites W4255833381 @default.
- W4313477303 cites W4294552392 @default.
- W4313477303 doi "https://doi.org/10.1109/access.2022.3233598" @default.
- W4313477303 hasPublicationYear "2023" @default.
- W4313477303 type Work @default.
- W4313477303 citedByCount "0" @default.
- W4313477303 crossrefType "journal-article" @default.
- W4313477303 hasAuthorship W4313477303A5033330630 @default.
- W4313477303 hasAuthorship W4313477303A5044645122 @default.
- W4313477303 hasBestOaLocation W43134773031 @default.
- W4313477303 hasConcept C106131492 @default.
- W4313477303 hasConcept C111919701 @default.
- W4313477303 hasConcept C11413529 @default.
- W4313477303 hasConcept C119857082 @default.
- W4313477303 hasConcept C12267149 @default.
- W4313477303 hasConcept C124101348 @default.
- W4313477303 hasConcept C140779682 @default.
- W4313477303 hasConcept C148483581 @default.
- W4313477303 hasConcept C153180895 @default.
- W4313477303 hasConcept C154945302 @default.
- W4313477303 hasConcept C185592680 @default.
- W4313477303 hasConcept C198531522 @default.
- W4313477303 hasConcept C31972630 @default.
- W4313477303 hasConcept C41008148 @default.
- W4313477303 hasConcept C43617362 @default.
- W4313477303 hasConcept C58166 @default.
- W4313477303 hasConcept C71559656 @default.
- W4313477303 hasConcept C75684735 @default.
- W4313477303 hasConcept C81917197 @default.
- W4313477303 hasConcept C95623464 @default.
- W4313477303 hasConcept C98045186 @default.
- W4313477303 hasConceptScore W4313477303C106131492 @default.
- W4313477303 hasConceptScore W4313477303C111919701 @default.
- W4313477303 hasConceptScore W4313477303C11413529 @default.
- W4313477303 hasConceptScore W4313477303C119857082 @default.
- W4313477303 hasConceptScore W4313477303C12267149 @default.
- W4313477303 hasConceptScore W4313477303C124101348 @default.
- W4313477303 hasConceptScore W4313477303C140779682 @default.
- W4313477303 hasConceptScore W4313477303C148483581 @default.
- W4313477303 hasConceptScore W4313477303C153180895 @default.
- W4313477303 hasConceptScore W4313477303C154945302 @default.
- W4313477303 hasConceptScore W4313477303C185592680 @default.
- W4313477303 hasConceptScore W4313477303C198531522 @default.
- W4313477303 hasConceptScore W4313477303C31972630 @default.
- W4313477303 hasConceptScore W4313477303C41008148 @default.
- W4313477303 hasConceptScore W4313477303C43617362 @default.
- W4313477303 hasConceptScore W4313477303C58166 @default.
- W4313477303 hasConceptScore W4313477303C71559656 @default.
- W4313477303 hasConceptScore W4313477303C75684735 @default.
- W4313477303 hasConceptScore W4313477303C81917197 @default.
- W4313477303 hasConceptScore W4313477303C95623464 @default.
- W4313477303 hasConceptScore W4313477303C98045186 @default.