Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313477615> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313477615 endingPage "37" @default.
- W4313477615 startingPage "29" @default.
- W4313477615 abstract "There is a need for robust methodological approaches to improve our capacity to automatically detect plant species from seed samples tohelp support plant management strategies. In this study, we tested different neural network techniques to automatically detect native species from seeds from the Andean páramo region based on optic RGB images. Specifically, we compared i) simple feed-forward networks (SNNs), consisting of feed-forward nets with error back-propagation, holding one hidden layer with different number of neurons; and ii) deep convolutional neural networks (CNNs), which have their convolutional layers-built form multiple 3x3 kernels. First, we sampled 50 seeds from four common plant species in the La Rusia Páramo (Colombia): Espeletia congestiflora, Bucquetia glutinosa, Calamagrostis effusa and Puya santosii. We took RGB images of individual seeds for each species on contrasted white and black backgrounds, and then classified all images under both SNNs and CNNs. Under a double cross-validation scheme, the SNN approach with 14 neurons approached 88% of test accuracy, while CNN achieved 93%. Moreover, when increasing the image sample in the training dataset fed to models, CNN performed with 100% accuracy when used on testing and validation datasets. Overall, the neural network approach explored here suggests a promising methodology for species prediction from seeds based on optical RGB images, with potential for automatic seed recognition and counting on the field." @default.
- W4313477615 created "2023-01-06" @default.
- W4313477615 creator A5054141166 @default.
- W4313477615 creator A5064020160 @default.
- W4313477615 creator A5072763411 @default.
- W4313477615 date "2023-01-01" @default.
- W4313477615 modified "2023-09-30" @default.
- W4313477615 title "Automatic seed classification for four páramo plant species by neural networks and optic RGB images" @default.
- W4313477615 cites W1565092356 @default.
- W4313477615 cites W1677796994 @default.
- W4313477615 cites W1964723990 @default.
- W4313477615 cites W1973732173 @default.
- W4313477615 cites W1999716334 @default.
- W4313477615 cites W2058296741 @default.
- W4313477615 cites W2063057245 @default.
- W4313477615 cites W2073087415 @default.
- W4313477615 cites W2090790364 @default.
- W4313477615 cites W2094603301 @default.
- W4313477615 cites W2106055803 @default.
- W4313477615 cites W2137983211 @default.
- W4313477615 cites W2616986248 @default.
- W4313477615 cites W2806821547 @default.
- W4313477615 cites W2807342108 @default.
- W4313477615 cites W2887968345 @default.
- W4313477615 cites W2913485104 @default.
- W4313477615 cites W3016891365 @default.
- W4313477615 cites W3178253763 @default.
- W4313477615 cites W3199210446 @default.
- W4313477615 doi "https://doi.org/10.1080/23766808.2022.2161243" @default.
- W4313477615 hasPublicationYear "2023" @default.
- W4313477615 type Work @default.
- W4313477615 citedByCount "2" @default.
- W4313477615 countsByYear W43134776152023 @default.
- W4313477615 crossrefType "journal-article" @default.
- W4313477615 hasAuthorship W4313477615A5054141166 @default.
- W4313477615 hasAuthorship W4313477615A5064020160 @default.
- W4313477615 hasAuthorship W4313477615A5072763411 @default.
- W4313477615 hasBestOaLocation W43134776151 @default.
- W4313477615 hasConcept C108583219 @default.
- W4313477615 hasConcept C153180895 @default.
- W4313477615 hasConcept C154945302 @default.
- W4313477615 hasConcept C41008148 @default.
- W4313477615 hasConcept C50644808 @default.
- W4313477615 hasConcept C81363708 @default.
- W4313477615 hasConcept C82990744 @default.
- W4313477615 hasConceptScore W4313477615C108583219 @default.
- W4313477615 hasConceptScore W4313477615C153180895 @default.
- W4313477615 hasConceptScore W4313477615C154945302 @default.
- W4313477615 hasConceptScore W4313477615C41008148 @default.
- W4313477615 hasConceptScore W4313477615C50644808 @default.
- W4313477615 hasConceptScore W4313477615C81363708 @default.
- W4313477615 hasConceptScore W4313477615C82990744 @default.
- W4313477615 hasIssue "1" @default.
- W4313477615 hasLocation W43134776151 @default.
- W4313477615 hasOpenAccess W4313477615 @default.
- W4313477615 hasPrimaryLocation W43134776151 @default.
- W4313477615 hasRelatedWork W2731899572 @default.
- W4313477615 hasRelatedWork W2774550181 @default.
- W4313477615 hasRelatedWork W2999805992 @default.
- W4313477615 hasRelatedWork W3011074480 @default.
- W4313477615 hasRelatedWork W3116150086 @default.
- W4313477615 hasRelatedWork W3133861977 @default.
- W4313477615 hasRelatedWork W4200173597 @default.
- W4313477615 hasRelatedWork W4291897433 @default.
- W4313477615 hasRelatedWork W4312417841 @default.
- W4313477615 hasRelatedWork W4321369474 @default.
- W4313477615 hasVolume "9" @default.
- W4313477615 isParatext "false" @default.
- W4313477615 isRetracted "false" @default.
- W4313477615 workType "article" @default.