Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313477913> ?p ?o ?g. }
- W4313477913 endingPage "161336" @default.
- W4313477913 startingPage "161336" @default.
- W4313477913 abstract "Meteorology, human activities, and other emission sources drive diurnal cyclic patterns of air pollution. Previous studies mainly focused on the variation of PM2.5 concentrations during daytime rather than nighttime. In addition, assessing the spatial variations of PM2.5 in large areas is a critical issue for environmental epidemiological studies to clarify the health effects from PM2.5 exposures. In terms of air pollution spatial modelling, using only a single model might lose information in capturing spatial and temporal correlation between predictors and pollutant levels. Hence, this study aimed to propose an ensemble mixed spatial model that incorporated Kriging interpolation, land-use regression (LUR), machine learning, and stacking ensemble approach to estimate long-term PM2.5 variations for nearly three decades in daytime and nighttime. Three steps of model development were applied: 1) linear based LUR and Hybrid Kriging-LUR were used to determine influential predictors; 2) machine learning algorithms were used to enhance model prediction accuracy; 3) predictions from the selected machine learning models were fitted and evaluated again to build the final ensemble mixed spatial model. The results showed that prediction performance increased from 0.514 to 0.895 for daily, 0.478 to 0.879 for daytime, and 0.523 to 0.878 for nighttime when applying the proposed ensemble mixed spatial model compared with LUR. Results of overfitting test and extrapolation ability test confirmed the robustness and reliability of the developed models. The distance to the nearest thermal power plant, density of soil and pebbles fields, and funeral facilities might affect the variation of PM2.5 levels between daytime and nighttime. The PM2.5 level was higher in daytime compared with nighttime with little difference, revealing the importance of estimating nighttime PM2.5 variations. Our findings also clarified the emission sources in daytime and nighttime, which serve as valuable information for air pollution control strategies establishment." @default.
- W4313477913 created "2023-01-06" @default.
- W4313477913 creator A5019298297 @default.
- W4313477913 creator A5047886124 @default.
- W4313477913 creator A5060356326 @default.
- W4313477913 creator A5079456300 @default.
- W4313477913 date "2023-03-01" @default.
- W4313477913 modified "2023-09-30" @default.
- W4313477913 title "An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan" @default.
- W4313477913 cites W1238277142 @default.
- W4313477913 cites W1617145133 @default.
- W4313477913 cites W1852179007 @default.
- W4313477913 cites W1989714516 @default.
- W4313477913 cites W2009009889 @default.
- W4313477913 cites W2017388934 @default.
- W4313477913 cites W2023018328 @default.
- W4313477913 cites W2028561100 @default.
- W4313477913 cites W2065947772 @default.
- W4313477913 cites W2066544083 @default.
- W4313477913 cites W2068604484 @default.
- W4313477913 cites W2098637521 @default.
- W4313477913 cites W2111119860 @default.
- W4313477913 cites W2140282454 @default.
- W4313477913 cites W2161055555 @default.
- W4313477913 cites W2523682462 @default.
- W4313477913 cites W2588050314 @default.
- W4313477913 cites W2766564424 @default.
- W4313477913 cites W2768650472 @default.
- W4313477913 cites W2774174309 @default.
- W4313477913 cites W2777481900 @default.
- W4313477913 cites W2780475264 @default.
- W4313477913 cites W2784306249 @default.
- W4313477913 cites W2793167459 @default.
- W4313477913 cites W2795406735 @default.
- W4313477913 cites W2804147771 @default.
- W4313477913 cites W2865430977 @default.
- W4313477913 cites W2883931985 @default.
- W4313477913 cites W2901327231 @default.
- W4313477913 cites W2901571457 @default.
- W4313477913 cites W2905241670 @default.
- W4313477913 cites W2906890566 @default.
- W4313477913 cites W2909938372 @default.
- W4313477913 cites W2917376136 @default.
- W4313477913 cites W2949910814 @default.
- W4313477913 cites W2950184753 @default.
- W4313477913 cites W2951487696 @default.
- W4313477913 cites W2952297896 @default.
- W4313477913 cites W2954586028 @default.
- W4313477913 cites W2981414800 @default.
- W4313477913 cites W2989449816 @default.
- W4313477913 cites W2990974130 @default.
- W4313477913 cites W2996331566 @default.
- W4313477913 cites W2998567072 @default.
- W4313477913 cites W3001175054 @default.
- W4313477913 cites W3044277859 @default.
- W4313477913 cites W3046374668 @default.
- W4313477913 cites W3072681182 @default.
- W4313477913 cites W3088942415 @default.
- W4313477913 cites W3090831378 @default.
- W4313477913 cites W3095239250 @default.
- W4313477913 cites W3123920941 @default.
- W4313477913 cites W3133613421 @default.
- W4313477913 cites W3137448771 @default.
- W4313477913 cites W3183431732 @default.
- W4313477913 cites W3184559581 @default.
- W4313477913 cites W3216137293 @default.
- W4313477913 cites W4213082201 @default.
- W4313477913 cites W4226017353 @default.
- W4313477913 cites W4291670288 @default.
- W4313477913 cites W4293032315 @default.
- W4313477913 doi "https://doi.org/10.1016/j.scitotenv.2022.161336" @default.
- W4313477913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36603626" @default.
- W4313477913 hasPublicationYear "2023" @default.
- W4313477913 type Work @default.
- W4313477913 citedByCount "1" @default.
- W4313477913 countsByYear W43134779132023 @default.
- W4313477913 crossrefType "journal-article" @default.
- W4313477913 hasAuthorship W4313477913A5019298297 @default.
- W4313477913 hasAuthorship W4313477913A5047886124 @default.
- W4313477913 hasAuthorship W4313477913A5060356326 @default.
- W4313477913 hasAuthorship W4313477913A5079456300 @default.
- W4313477913 hasConcept C105795698 @default.
- W4313477913 hasConcept C119857082 @default.
- W4313477913 hasConcept C127313418 @default.
- W4313477913 hasConcept C150060386 @default.
- W4313477913 hasConcept C153294291 @default.
- W4313477913 hasConcept C158709400 @default.
- W4313477913 hasConcept C162725370 @default.
- W4313477913 hasConcept C178790620 @default.
- W4313477913 hasConcept C185592680 @default.
- W4313477913 hasConcept C18903297 @default.
- W4313477913 hasConcept C203332170 @default.
- W4313477913 hasConcept C205203396 @default.
- W4313477913 hasConcept C205649164 @default.
- W4313477913 hasConcept C22019652 @default.
- W4313477913 hasConcept C33923547 @default.
- W4313477913 hasConcept C39432304 @default.
- W4313477913 hasConcept C41008148 @default.