Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313478509> ?p ?o ?g. }
- W4313478509 abstract "Abstract Risk prediction models are frequently used to identify individuals at risk of developing hypertension. This study evaluates different machine learning algorithms and compares their predictive performance with the conventional Cox proportional hazards (PH) model to predict hypertension incidence using survival data. This study analyzed 18,322 participants on 24 candidate features from the large Alberta’s Tomorrow Project (ATP) to develop different prediction models. To select the top features, we applied five feature selection methods, including two filter-based: a univariate Cox p-value and C-index; two embedded-based: random survival forest and least absolute shrinkage and selection operator (Lasso); and one constraint-based: the statistically equivalent signature (SES). Five machine learning algorithms were developed to predict hypertension incidence: penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient boosting (GB), along with the conventional Cox PH model. The predictive performance of the models was assessed using C-index. The performance of machine learning algorithms was observed, similar to the conventional Cox PH model. Average C-indexes were 0.78, 0.78, 0.78, 0.76, 0.76, and 0.77 for Ridge, Lasso, EN, RSF, GB and Cox PH, respectively. Important features associated with each model were also presented. Our study findings demonstrate little predictive performance difference between machine learning algorithms and the conventional Cox PH regression model in predicting hypertension incidence. In a moderate dataset with a reasonable number of features, conventional regression-based models perform similar to machine learning algorithms with good predictive accuracy." @default.
- W4313478509 created "2023-01-06" @default.
- W4313478509 creator A5030946193 @default.
- W4313478509 creator A5041115994 @default.
- W4313478509 creator A5052287622 @default.
- W4313478509 creator A5069746190 @default.
- W4313478509 creator A5081613369 @default.
- W4313478509 creator A5084251116 @default.
- W4313478509 creator A5090161362 @default.
- W4313478509 date "2023-01-02" @default.
- W4313478509 modified "2023-10-10" @default.
- W4313478509 title "A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population" @default.
- W4313478509 cites W1531059246 @default.
- W4313478509 cites W1656898673 @default.
- W4313478509 cites W1841299413 @default.
- W4313478509 cites W1879406984 @default.
- W4313478509 cites W1905782493 @default.
- W4313478509 cites W1945743190 @default.
- W4313478509 cites W1969879877 @default.
- W4313478509 cites W1986781387 @default.
- W4313478509 cites W1996173692 @default.
- W4313478509 cites W2001671884 @default.
- W4313478509 cites W2004141349 @default.
- W4313478509 cites W2005852722 @default.
- W4313478509 cites W2022906464 @default.
- W4313478509 cites W2040629505 @default.
- W4313478509 cites W2050276969 @default.
- W4313478509 cites W2057678261 @default.
- W4313478509 cites W2060947741 @default.
- W4313478509 cites W2071721660 @default.
- W4313478509 cites W2084139018 @default.
- W4313478509 cites W2113559481 @default.
- W4313478509 cites W2115098571 @default.
- W4313478509 cites W2156831284 @default.
- W4313478509 cites W2157784421 @default.
- W4313478509 cites W2165190832 @default.
- W4313478509 cites W2167101736 @default.
- W4313478509 cites W2171234883 @default.
- W4313478509 cites W2320433812 @default.
- W4313478509 cites W2364509720 @default.
- W4313478509 cites W2414926460 @default.
- W4313478509 cites W2477754002 @default.
- W4313478509 cites W2498119267 @default.
- W4313478509 cites W2538353315 @default.
- W4313478509 cites W2542719835 @default.
- W4313478509 cites W2588258474 @default.
- W4313478509 cites W2770322578 @default.
- W4313478509 cites W2783498497 @default.
- W4313478509 cites W2786814109 @default.
- W4313478509 cites W2794650580 @default.
- W4313478509 cites W2802250559 @default.
- W4313478509 cites W2894636309 @default.
- W4313478509 cites W2902143327 @default.
- W4313478509 cites W2911964244 @default.
- W4313478509 cites W2969568575 @default.
- W4313478509 cites W3000470572 @default.
- W4313478509 cites W3008317100 @default.
- W4313478509 cites W3008867523 @default.
- W4313478509 cites W3013557364 @default.
- W4313478509 cites W3014245704 @default.
- W4313478509 cites W3015191880 @default.
- W4313478509 cites W3139599754 @default.
- W4313478509 cites W3164570271 @default.
- W4313478509 cites W3191747269 @default.
- W4313478509 cites W3193823764 @default.
- W4313478509 cites W4226113147 @default.
- W4313478509 cites W4288752043 @default.
- W4313478509 doi "https://doi.org/10.1038/s41598-022-27264-x" @default.
- W4313478509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36593280" @default.
- W4313478509 hasPublicationYear "2023" @default.
- W4313478509 type Work @default.
- W4313478509 citedByCount "2" @default.
- W4313478509 countsByYear W43134785092023 @default.
- W4313478509 crossrefType "journal-article" @default.
- W4313478509 hasAuthorship W4313478509A5030946193 @default.
- W4313478509 hasAuthorship W4313478509A5041115994 @default.
- W4313478509 hasAuthorship W4313478509A5052287622 @default.
- W4313478509 hasAuthorship W4313478509A5069746190 @default.
- W4313478509 hasAuthorship W4313478509A5081613369 @default.
- W4313478509 hasAuthorship W4313478509A5084251116 @default.
- W4313478509 hasAuthorship W4313478509A5090161362 @default.
- W4313478509 hasBestOaLocation W43134785091 @default.
- W4313478509 hasConcept C105795698 @default.
- W4313478509 hasConcept C11413529 @default.
- W4313478509 hasConcept C119857082 @default.
- W4313478509 hasConcept C12267149 @default.
- W4313478509 hasConcept C136764020 @default.
- W4313478509 hasConcept C148483581 @default.
- W4313478509 hasConcept C154945302 @default.
- W4313478509 hasConcept C161584116 @default.
- W4313478509 hasConcept C169258074 @default.
- W4313478509 hasConcept C199163554 @default.
- W4313478509 hasConcept C203868755 @default.
- W4313478509 hasConcept C2908647359 @default.
- W4313478509 hasConcept C33923547 @default.
- W4313478509 hasConcept C37616216 @default.
- W4313478509 hasConcept C41008148 @default.
- W4313478509 hasConcept C45804977 @default.
- W4313478509 hasConcept C50382708 @default.
- W4313478509 hasConcept C70153297 @default.