Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313478579> ?p ?o ?g. }
- W4313478579 endingPage "907" @default.
- W4313478579 startingPage "893" @default.
- W4313478579 abstract "In this paper, we investigate the content popularity prediction problem in cache-enabled fog radio access networks (F-RANs). In order to predict the content popularity with high accuracy and low complexity, we propose a Gaussian process based regressor to model the content request pattern. Firstly, the relationship between content features and popularity is captured by our proposed model. Then, we utilize Bayesian learning to train the model parameters, which is robust to overfitting. However, Bayesian methods are usually unable to find a closed-form expression of the posterior distribution. To tackle this issue, we apply a stochastic variance reduced gradient Hamiltonian Monte Carlo (SVRG-HMC) method to approximate the posterior distribution. To utilize the computing resource of fog access points (F-APs) and also reduce the communication overhead, we propose a quantized federated learning (FL) framework combining with Bayesian learning. The proposed quantized federated Bayesian learning framework allows each F-AP to send gradients to the cloud server after quantizing and encoding. It can achieve a tradeoff between prediction accuracy and communication overhead effectively. Simulation results show that the performance of our proposed policy outperforms the considered baseline policies." @default.
- W4313478579 created "2023-01-06" @default.
- W4313478579 creator A5014004455 @default.
- W4313478579 creator A5016127527 @default.
- W4313478579 creator A5016793245 @default.
- W4313478579 creator A5027817702 @default.
- W4313478579 creator A5036833081 @default.
- W4313478579 creator A5050166453 @default.
- W4313478579 creator A5053242519 @default.
- W4313478579 creator A5072916702 @default.
- W4313478579 date "2023-02-01" @default.
- W4313478579 modified "2023-10-18" @default.
- W4313478579 title "Content Popularity Prediction Based on Quantized Federated Bayesian Learning in Fog Radio Access Networks" @default.
- W4313478579 cites W139031692 @default.
- W4313478579 cites W2009708702 @default.
- W4313478579 cites W2060108852 @default.
- W4313478579 cites W2081646413 @default.
- W4313478579 cites W2128777897 @default.
- W4313478579 cites W2138350977 @default.
- W4313478579 cites W2153272863 @default.
- W4313478579 cites W2159239632 @default.
- W4313478579 cites W2219888463 @default.
- W4313478579 cites W2887408998 @default.
- W4313478579 cites W2900490252 @default.
- W4313478579 cites W2911717124 @default.
- W4313478579 cites W2916236867 @default.
- W4313478579 cites W2918876522 @default.
- W4313478579 cites W2979714634 @default.
- W4313478579 cites W2981958729 @default.
- W4313478579 cites W2982287213 @default.
- W4313478579 cites W2989289980 @default.
- W4313478579 cites W2990774343 @default.
- W4313478579 cites W2991236681 @default.
- W4313478579 cites W2997091448 @default.
- W4313478579 cites W3004749007 @default.
- W4313478579 cites W3006617398 @default.
- W4313478579 cites W3008001302 @default.
- W4313478579 cites W3009858269 @default.
- W4313478579 cites W3011079479 @default.
- W4313478579 cites W3027918310 @default.
- W4313478579 cites W3036934984 @default.
- W4313478579 cites W3044299892 @default.
- W4313478579 cites W3046032603 @default.
- W4313478579 cites W3048841343 @default.
- W4313478579 cites W3087773461 @default.
- W4313478579 cites W3088733992 @default.
- W4313478579 cites W3101454826 @default.
- W4313478579 cites W3110989801 @default.
- W4313478579 cites W3125471574 @default.
- W4313478579 cites W3131075860 @default.
- W4313478579 cites W3156841666 @default.
- W4313478579 cites W3159080474 @default.
- W4313478579 cites W3193726135 @default.
- W4313478579 cites W3209696639 @default.
- W4313478579 cites W3212948368 @default.
- W4313478579 cites W4210693109 @default.
- W4313478579 cites W4210713758 @default.
- W4313478579 cites W4301420995 @default.
- W4313478579 doi "https://doi.org/10.1109/tcomm.2022.3229679" @default.
- W4313478579 hasPublicationYear "2023" @default.
- W4313478579 type Work @default.
- W4313478579 citedByCount "0" @default.
- W4313478579 crossrefType "journal-article" @default.
- W4313478579 hasAuthorship W4313478579A5014004455 @default.
- W4313478579 hasAuthorship W4313478579A5016127527 @default.
- W4313478579 hasAuthorship W4313478579A5016793245 @default.
- W4313478579 hasAuthorship W4313478579A5027817702 @default.
- W4313478579 hasAuthorship W4313478579A5036833081 @default.
- W4313478579 hasAuthorship W4313478579A5050166453 @default.
- W4313478579 hasAuthorship W4313478579A5053242519 @default.
- W4313478579 hasAuthorship W4313478579A5072916702 @default.
- W4313478579 hasBestOaLocation W43134785792 @default.
- W4313478579 hasConcept C107673813 @default.
- W4313478579 hasConcept C111919701 @default.
- W4313478579 hasConcept C119857082 @default.
- W4313478579 hasConcept C154945302 @default.
- W4313478579 hasConcept C2779960059 @default.
- W4313478579 hasConcept C41008148 @default.
- W4313478579 hasConceptScore W4313478579C107673813 @default.
- W4313478579 hasConceptScore W4313478579C111919701 @default.
- W4313478579 hasConceptScore W4313478579C119857082 @default.
- W4313478579 hasConceptScore W4313478579C154945302 @default.
- W4313478579 hasConceptScore W4313478579C2779960059 @default.
- W4313478579 hasConceptScore W4313478579C41008148 @default.
- W4313478579 hasFunder F4320321001 @default.
- W4313478579 hasFunder F4320335777 @default.
- W4313478579 hasFunder F4320336569 @default.
- W4313478579 hasIssue "2" @default.
- W4313478579 hasLocation W43134785791 @default.
- W4313478579 hasLocation W43134785792 @default.
- W4313478579 hasOpenAccess W4313478579 @default.
- W4313478579 hasPrimaryLocation W43134785791 @default.
- W4313478579 hasRelatedWork W2028024605 @default.
- W4313478579 hasRelatedWork W2961085424 @default.
- W4313478579 hasRelatedWork W3046775127 @default.
- W4313478579 hasRelatedWork W3107474891 @default.
- W4313478579 hasRelatedWork W4205958290 @default.
- W4313478579 hasRelatedWork W4285260836 @default.