Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313478785> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313478785 endingPage "128414" @default.
- W4313478785 startingPage "128414" @default.
- W4313478785 abstract "Traffic flow forecasting is critical in transportation research. However, the excessive nonlinearity and complexity of spatial and temporal correlations in traffic flow critically restrict the prediction accuracy. To cope with the challenge, a parallel–series combined deep learning prediction model is proposed. Firstly, the traffic flow data is decomposed into unique time spans consistent with positive rules (weekly, daily, and hourly cycles). Then, a deep learning model named Transformer-Graph Convolutional Attention Networks (TRGCAT) is further used to predict the multi-flow in the traffic network. TRGCAT firstly encodes and concatenates the current hourly, daily, and weekly periodic features of all traffic nodes in parallel, which decodes the middle output with spatial features, and ultimately predicts future single-step, short-term, and long-term multi-step traffic flow by using Graph Convolutional Attention Network (GCAT) in series. We conduct numerical experiments on open-source datasets PeMS, the results show that TRGCAT does better in spatial and temporal fusion and may acquire extra aggressive forecasting consequences than baseline methods." @default.
- W4313478785 created "2023-01-06" @default.
- W4313478785 creator A5023481236 @default.
- W4313478785 creator A5042503646 @default.
- W4313478785 creator A5048500045 @default.
- W4313478785 date "2023-01-01" @default.
- W4313478785 modified "2023-10-09" @default.
- W4313478785 title "Research on spatio-temporal network prediction model of parallel–series traffic flow based on Transformer and GCAT" @default.
- W4313478785 cites W1983883318 @default.
- W4313478785 cites W1988489815 @default.
- W4313478785 cites W1990816055 @default.
- W4313478785 cites W2004353783 @default.
- W4313478785 cites W2027392238 @default.
- W4313478785 cites W2116341502 @default.
- W4313478785 cites W2131739422 @default.
- W4313478785 cites W2150010190 @default.
- W4313478785 cites W2151025687 @default.
- W4313478785 cites W2470641485 @default.
- W4313478785 cites W2613322775 @default.
- W4313478785 cites W2903871660 @default.
- W4313478785 cites W2945622688 @default.
- W4313478785 cites W2963017945 @default.
- W4313478785 cites W3009311085 @default.
- W4313478785 cites W3034749137 @default.
- W4313478785 cites W3209833544 @default.
- W4313478785 cites W4210378842 @default.
- W4313478785 cites W4280489889 @default.
- W4313478785 doi "https://doi.org/10.1016/j.physa.2022.128414" @default.
- W4313478785 hasPublicationYear "2023" @default.
- W4313478785 type Work @default.
- W4313478785 citedByCount "1" @default.
- W4313478785 countsByYear W43134787852023 @default.
- W4313478785 crossrefType "journal-article" @default.
- W4313478785 hasAuthorship W4313478785A5023481236 @default.
- W4313478785 hasAuthorship W4313478785A5042503646 @default.
- W4313478785 hasAuthorship W4313478785A5048500045 @default.
- W4313478785 hasConcept C108583219 @default.
- W4313478785 hasConcept C114614502 @default.
- W4313478785 hasConcept C119599485 @default.
- W4313478785 hasConcept C119857082 @default.
- W4313478785 hasConcept C124101348 @default.
- W4313478785 hasConcept C127413603 @default.
- W4313478785 hasConcept C132525143 @default.
- W4313478785 hasConcept C151406439 @default.
- W4313478785 hasConcept C154945302 @default.
- W4313478785 hasConcept C165801399 @default.
- W4313478785 hasConcept C207512268 @default.
- W4313478785 hasConcept C31258907 @default.
- W4313478785 hasConcept C33923547 @default.
- W4313478785 hasConcept C41008148 @default.
- W4313478785 hasConcept C66322947 @default.
- W4313478785 hasConcept C80444323 @default.
- W4313478785 hasConcept C87619178 @default.
- W4313478785 hasConceptScore W4313478785C108583219 @default.
- W4313478785 hasConceptScore W4313478785C114614502 @default.
- W4313478785 hasConceptScore W4313478785C119599485 @default.
- W4313478785 hasConceptScore W4313478785C119857082 @default.
- W4313478785 hasConceptScore W4313478785C124101348 @default.
- W4313478785 hasConceptScore W4313478785C127413603 @default.
- W4313478785 hasConceptScore W4313478785C132525143 @default.
- W4313478785 hasConceptScore W4313478785C151406439 @default.
- W4313478785 hasConceptScore W4313478785C154945302 @default.
- W4313478785 hasConceptScore W4313478785C165801399 @default.
- W4313478785 hasConceptScore W4313478785C207512268 @default.
- W4313478785 hasConceptScore W4313478785C31258907 @default.
- W4313478785 hasConceptScore W4313478785C33923547 @default.
- W4313478785 hasConceptScore W4313478785C41008148 @default.
- W4313478785 hasConceptScore W4313478785C66322947 @default.
- W4313478785 hasConceptScore W4313478785C80444323 @default.
- W4313478785 hasConceptScore W4313478785C87619178 @default.
- W4313478785 hasFunder F4320321001 @default.
- W4313478785 hasFunder F4320325566 @default.
- W4313478785 hasFunder F4320325900 @default.
- W4313478785 hasLocation W43134787851 @default.
- W4313478785 hasOpenAccess W4313478785 @default.
- W4313478785 hasPrimaryLocation W43134787851 @default.
- W4313478785 hasRelatedWork W2150768546 @default.
- W4313478785 hasRelatedWork W2169308097 @default.
- W4313478785 hasRelatedWork W2373577936 @default.
- W4313478785 hasRelatedWork W2389596151 @default.
- W4313478785 hasRelatedWork W2784004155 @default.
- W4313478785 hasRelatedWork W3091984855 @default.
- W4313478785 hasRelatedWork W3095575180 @default.
- W4313478785 hasRelatedWork W3167790492 @default.
- W4313478785 hasRelatedWork W4221148444 @default.
- W4313478785 hasRelatedWork W4306784355 @default.
- W4313478785 hasVolume "610" @default.
- W4313478785 isParatext "false" @default.
- W4313478785 isRetracted "false" @default.
- W4313478785 workType "article" @default.