Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313478814> ?p ?o ?g. }
- W4313478814 endingPage "106188" @default.
- W4313478814 startingPage "106188" @default.
- W4313478814 abstract "We present a computational framework for two-scale asymptotic homogenization to determine the intrinsic magnetic permeability of composites. To this end, considering linear magnetostatics, both vector and scalar potential formulations are used. Our homogenization algorithm for solving the cell problem is based on the displacement method presented in Lukkassen et al. 1995, Composites Engineering, 5(5), 519-531. We propose the use of the meridional eccentricity of the permeability tensor ellipsoid as an anisotropy index quantifying the degree of directionality in the linear magnetic response. As application problems, 2D regular and random microstructures with overlapping and nonoverlapping monodisperse disks, all of which are periodic, are considered. We show that, for the vanishing corrector function, the derived effective magnetic permeability tensor gives the (lower) Reuss and (upper) Voigt bounds with the vector and scalar potential formulations, respectively. Our results with periodic boundary conditions show an excellent agreement with analytical solutions for regular composites, whereas, for random heterogeneous materials, their convergence with volume element size is fast. Predictions for material systems with monodisperse overlapping disks for a given inclusion volume fraction provide the highest magnetic permeability with the most increased inclusion interaction. In contrast, the disk arrangements in regular square lattices result in the lowest magnetic permeability and inadequate inclusion interaction. Such differences are beyond the reach of the isotropic effective medium theories, which use only the phase volume fraction and shape as mere statistical microstructural descriptors." @default.
- W4313478814 created "2023-01-06" @default.
- W4313478814 creator A5003917177 @default.
- W4313478814 creator A5011741854 @default.
- W4313478814 creator A5043830254 @default.
- W4313478814 creator A5079667143 @default.
- W4313478814 date "2023-01-01" @default.
- W4313478814 modified "2023-10-18" @default.
- W4313478814 title "Asymptotic homogenization in the determination of effective intrinsic magnetic properties of composites" @default.
- W4313478814 cites W1740899502 @default.
- W4313478814 cites W1965446222 @default.
- W4313478814 cites W1971972773 @default.
- W4313478814 cites W1972017923 @default.
- W4313478814 cites W1975673009 @default.
- W4313478814 cites W1977781243 @default.
- W4313478814 cites W1977892317 @default.
- W4313478814 cites W1985261292 @default.
- W4313478814 cites W1989993440 @default.
- W4313478814 cites W2002356684 @default.
- W4313478814 cites W2012741190 @default.
- W4313478814 cites W2014793505 @default.
- W4313478814 cites W2035455885 @default.
- W4313478814 cites W2038777987 @default.
- W4313478814 cites W2041610501 @default.
- W4313478814 cites W2073077804 @default.
- W4313478814 cites W2073120132 @default.
- W4313478814 cites W2076718237 @default.
- W4313478814 cites W2081224670 @default.
- W4313478814 cites W2093083737 @default.
- W4313478814 cites W2104112745 @default.
- W4313478814 cites W2108888387 @default.
- W4313478814 cites W2117581574 @default.
- W4313478814 cites W2134547952 @default.
- W4313478814 cites W2142067702 @default.
- W4313478814 cites W2153028941 @default.
- W4313478814 cites W2327716809 @default.
- W4313478814 cites W2499332921 @default.
- W4313478814 cites W2584052967 @default.
- W4313478814 cites W2809474353 @default.
- W4313478814 cites W2915004806 @default.
- W4313478814 cites W2953130411 @default.
- W4313478814 cites W2954459433 @default.
- W4313478814 cites W3119712098 @default.
- W4313478814 doi "https://doi.org/10.1016/j.rinp.2022.106188" @default.
- W4313478814 hasPublicationYear "2023" @default.
- W4313478814 type Work @default.
- W4313478814 citedByCount "1" @default.
- W4313478814 countsByYear W43134788142023 @default.
- W4313478814 crossrefType "journal-article" @default.
- W4313478814 hasAuthorship W4313478814A5003917177 @default.
- W4313478814 hasAuthorship W4313478814A5011741854 @default.
- W4313478814 hasAuthorship W4313478814A5043830254 @default.
- W4313478814 hasAuthorship W4313478814A5079667143 @default.
- W4313478814 hasBestOaLocation W43134788141 @default.
- W4313478814 hasConcept C104779481 @default.
- W4313478814 hasConcept C121332964 @default.
- W4313478814 hasConcept C130217890 @default.
- W4313478814 hasConcept C134306372 @default.
- W4313478814 hasConcept C159985019 @default.
- W4313478814 hasConcept C184050105 @default.
- W4313478814 hasConcept C18903297 @default.
- W4313478814 hasConcept C192562407 @default.
- W4313478814 hasConcept C2777581374 @default.
- W4313478814 hasConcept C2778722038 @default.
- W4313478814 hasConcept C33923547 @default.
- W4313478814 hasConcept C62520636 @default.
- W4313478814 hasConcept C85725439 @default.
- W4313478814 hasConcept C86803240 @default.
- W4313478814 hasConceptScore W4313478814C104779481 @default.
- W4313478814 hasConceptScore W4313478814C121332964 @default.
- W4313478814 hasConceptScore W4313478814C130217890 @default.
- W4313478814 hasConceptScore W4313478814C134306372 @default.
- W4313478814 hasConceptScore W4313478814C159985019 @default.
- W4313478814 hasConceptScore W4313478814C184050105 @default.
- W4313478814 hasConceptScore W4313478814C18903297 @default.
- W4313478814 hasConceptScore W4313478814C192562407 @default.
- W4313478814 hasConceptScore W4313478814C2777581374 @default.
- W4313478814 hasConceptScore W4313478814C2778722038 @default.
- W4313478814 hasConceptScore W4313478814C33923547 @default.
- W4313478814 hasConceptScore W4313478814C62520636 @default.
- W4313478814 hasConceptScore W4313478814C85725439 @default.
- W4313478814 hasConceptScore W4313478814C86803240 @default.
- W4313478814 hasFunder F4320334893 @default.
- W4313478814 hasLocation W43134788141 @default.
- W4313478814 hasLocation W43134788142 @default.
- W4313478814 hasLocation W43134788143 @default.
- W4313478814 hasLocation W43134788144 @default.
- W4313478814 hasOpenAccess W4313478814 @default.
- W4313478814 hasPrimaryLocation W43134788141 @default.
- W4313478814 hasRelatedWork W1501537957 @default.
- W4313478814 hasRelatedWork W1965183937 @default.
- W4313478814 hasRelatedWork W1995301894 @default.
- W4313478814 hasRelatedWork W2002964458 @default.
- W4313478814 hasRelatedWork W2015860364 @default.
- W4313478814 hasRelatedWork W2097618123 @default.
- W4313478814 hasRelatedWork W2486669035 @default.
- W4313478814 hasRelatedWork W2925103490 @default.
- W4313478814 hasRelatedWork W4237298715 @default.