Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313478842> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313478842 endingPage "100665" @default.
- W4313478842 startingPage "100665" @default.
- W4313478842 abstract "The acceleration of deep neural networks (DNNs) on edge devices is gaining significant importance in various application domains. General purpose graphics processing units (GPGPUs) are typically used to explore, train and evaluate DNNs because they offer higher processing and computational capability compared to CPUs. However, this comes at the cost of increased power consumption required by these devices for operation, which prevents efficient deployment of networks on edge devices. In the Internet of Things (IoT) domain, Field programmable gate arrays (FPGAs) are considered a powerful alternative since their flexible architecture can run the DNNs with much less energy. The enormous amount of effort and time required for the entire end-to-end edge-aware deployment urged us to develop DeepEdgeSoc, an integrated framework for deep learning (DL) design and acceleration. DeepEdgeSoc is an overarching framework under which DNNs can be built. DeepGUI, a visual drag-and-drop DNN design environment, plays an important role in accelerating the network design phase. In DeepEdgeSoc, the networks can be quantized and compressed to suite the underlying edge devices in terms of size and energy. DeepEdgeSoc goes beyond the software level by converting the networks to appropriate FPGA implementations that can be directly synthesized and integrated within a System-on-Chip (SoC)." @default.
- W4313478842 created "2023-01-06" @default.
- W4313478842 creator A5024160054 @default.
- W4313478842 creator A5031685742 @default.
- W4313478842 creator A5051650277 @default.
- W4313478842 date "2023-04-01" @default.
- W4313478842 modified "2023-09-27" @default.
- W4313478842 title "DeepEdgeSoC: End-to-end deep learning framework for edge IoT devices" @default.
- W4313478842 cites W2002427601 @default.
- W4313478842 cites W2064675550 @default.
- W4313478842 cites W2126536832 @default.
- W4313478842 cites W2896983500 @default.
- W4313478842 cites W2989308741 @default.
- W4313478842 cites W3025875124 @default.
- W4313478842 cites W3101493857 @default.
- W4313478842 cites W3102169921 @default.
- W4313478842 cites W3116460607 @default.
- W4313478842 cites W3189697341 @default.
- W4313478842 doi "https://doi.org/10.1016/j.iot.2022.100665" @default.
- W4313478842 hasPublicationYear "2023" @default.
- W4313478842 type Work @default.
- W4313478842 citedByCount "1" @default.
- W4313478842 countsByYear W43134788422023 @default.
- W4313478842 crossrefType "journal-article" @default.
- W4313478842 hasAuthorship W4313478842A5024160054 @default.
- W4313478842 hasAuthorship W4313478842A5031685742 @default.
- W4313478842 hasAuthorship W4313478842A5051650277 @default.
- W4313478842 hasBestOaLocation W43134788421 @default.
- W4313478842 hasConcept C105339364 @default.
- W4313478842 hasConcept C108583219 @default.
- W4313478842 hasConcept C111919701 @default.
- W4313478842 hasConcept C115903868 @default.
- W4313478842 hasConcept C118524514 @default.
- W4313478842 hasConcept C120314980 @default.
- W4313478842 hasConcept C13164978 @default.
- W4313478842 hasConcept C138236772 @default.
- W4313478842 hasConcept C149635348 @default.
- W4313478842 hasConcept C154945302 @default.
- W4313478842 hasConcept C162307627 @default.
- W4313478842 hasConcept C166957645 @default.
- W4313478842 hasConcept C21442007 @default.
- W4313478842 hasConcept C26713055 @default.
- W4313478842 hasConcept C2778456923 @default.
- W4313478842 hasConcept C41008148 @default.
- W4313478842 hasConcept C42935608 @default.
- W4313478842 hasConcept C79581498 @default.
- W4313478842 hasConcept C79974875 @default.
- W4313478842 hasConcept C95457728 @default.
- W4313478842 hasConceptScore W4313478842C105339364 @default.
- W4313478842 hasConceptScore W4313478842C108583219 @default.
- W4313478842 hasConceptScore W4313478842C111919701 @default.
- W4313478842 hasConceptScore W4313478842C115903868 @default.
- W4313478842 hasConceptScore W4313478842C118524514 @default.
- W4313478842 hasConceptScore W4313478842C120314980 @default.
- W4313478842 hasConceptScore W4313478842C13164978 @default.
- W4313478842 hasConceptScore W4313478842C138236772 @default.
- W4313478842 hasConceptScore W4313478842C149635348 @default.
- W4313478842 hasConceptScore W4313478842C154945302 @default.
- W4313478842 hasConceptScore W4313478842C162307627 @default.
- W4313478842 hasConceptScore W4313478842C166957645 @default.
- W4313478842 hasConceptScore W4313478842C21442007 @default.
- W4313478842 hasConceptScore W4313478842C26713055 @default.
- W4313478842 hasConceptScore W4313478842C2778456923 @default.
- W4313478842 hasConceptScore W4313478842C41008148 @default.
- W4313478842 hasConceptScore W4313478842C42935608 @default.
- W4313478842 hasConceptScore W4313478842C79581498 @default.
- W4313478842 hasConceptScore W4313478842C79974875 @default.
- W4313478842 hasConceptScore W4313478842C95457728 @default.
- W4313478842 hasFunder F4320321114 @default.
- W4313478842 hasLocation W43134788421 @default.
- W4313478842 hasOpenAccess W4313478842 @default.
- W4313478842 hasPrimaryLocation W43134788421 @default.
- W4313478842 hasRelatedWork W2900470768 @default.
- W4313478842 hasRelatedWork W2904860384 @default.
- W4313478842 hasRelatedWork W2963610322 @default.
- W4313478842 hasRelatedWork W2971091622 @default.
- W4313478842 hasRelatedWork W3172132501 @default.
- W4313478842 hasRelatedWork W4281626444 @default.
- W4313478842 hasRelatedWork W4289292277 @default.
- W4313478842 hasRelatedWork W4311326348 @default.
- W4313478842 hasRelatedWork W4312641555 @default.
- W4313478842 hasRelatedWork W4386004629 @default.
- W4313478842 hasVolume "21" @default.
- W4313478842 isParatext "false" @default.
- W4313478842 isRetracted "false" @default.
- W4313478842 workType "article" @default.