Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313479451> ?p ?o ?g. }
- W4313479451 endingPage "104747" @default.
- W4313479451 startingPage "104747" @default.
- W4313479451 abstract "Surface plasmon resonance-based colorimetric sensor arrays made up of metallic nanoparticles (NPs) are powerful tools that are mostly used for pattern recognition and quantification purposes, especially in the case of pharmaceutical and biologically active substances. Ease of fabrication, simplicity, cost-effectiveness, and huge amounts of collectible data besides the various fabrication techniques, expand their applications in analytical chemistry, especially when combined with chemometrics data analysis tools. In this study, a colorimetric sensor array is fabricated using unmodified citrate-capped together with the modified AgNPs for the discrimination of three fluoroquinolone drugs ofloxacin, ciprofloxacin, and moxifloxacin in real serum samples. The aggregation-induced color changes of the AgNPs were monitored during the time and the collected kinetic-spectrophotometric huge data in the ranges 300–800 nm was compressed by Discrete Wavelet Transform (DWT) to remove the redundant variables and analyzed with different unsupervised and supervised pattern recognition techniques like Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA) and XY-Fused neural networks (XYF). The best classification performance was achieved using the genetic algorithm-optimized XY-Fused networks with 92% accuracy and an error of cross-validation equal to zero. In addition, all of the spiked real serum samples were classified correctly using the generated model according to the assigned class labels." @default.
- W4313479451 created "2023-01-06" @default.
- W4313479451 creator A5006747612 @default.
- W4313479451 creator A5030654852 @default.
- W4313479451 creator A5062854491 @default.
- W4313479451 date "2023-02-01" @default.
- W4313479451 modified "2023-09-26" @default.
- W4313479451 title "Application of linear and nonlinear pattern recognition techniques for discrimination of fluoroquinolones using modified AgNPs-based colorimetric sensor array" @default.
- W4313479451 cites W1968614924 @default.
- W4313479451 cites W1969876879 @default.
- W4313479451 cites W1970458547 @default.
- W4313479451 cites W1984981454 @default.
- W4313479451 cites W1996769776 @default.
- W4313479451 cites W2005276533 @default.
- W4313479451 cites W2008721938 @default.
- W4313479451 cites W2009616234 @default.
- W4313479451 cites W2021458893 @default.
- W4313479451 cites W2050027750 @default.
- W4313479451 cites W2051216975 @default.
- W4313479451 cites W2063396347 @default.
- W4313479451 cites W2079247970 @default.
- W4313479451 cites W2083945431 @default.
- W4313479451 cites W2084416609 @default.
- W4313479451 cites W2087612422 @default.
- W4313479451 cites W2089349500 @default.
- W4313479451 cites W2106855632 @default.
- W4313479451 cites W2150944559 @default.
- W4313479451 cites W2301763758 @default.
- W4313479451 cites W2317151952 @default.
- W4313479451 cites W2515327825 @default.
- W4313479451 cites W2753828411 @default.
- W4313479451 cites W2755846005 @default.
- W4313479451 cites W2772750288 @default.
- W4313479451 cites W2773275559 @default.
- W4313479451 cites W2789242087 @default.
- W4313479451 cites W2793627968 @default.
- W4313479451 cites W2903954772 @default.
- W4313479451 cites W2945460091 @default.
- W4313479451 cites W2980348554 @default.
- W4313479451 cites W2990270236 @default.
- W4313479451 cites W3003496538 @default.
- W4313479451 cites W3015790544 @default.
- W4313479451 cites W3021464661 @default.
- W4313479451 cites W3021956449 @default.
- W4313479451 cites W3176724864 @default.
- W4313479451 cites W4248220371 @default.
- W4313479451 cites W4282839147 @default.
- W4313479451 doi "https://doi.org/10.1016/j.chemolab.2022.104747" @default.
- W4313479451 hasPublicationYear "2023" @default.
- W4313479451 type Work @default.
- W4313479451 citedByCount "0" @default.
- W4313479451 crossrefType "journal-article" @default.
- W4313479451 hasAuthorship W4313479451A5006747612 @default.
- W4313479451 hasAuthorship W4313479451A5030654852 @default.
- W4313479451 hasAuthorship W4313479451A5062854491 @default.
- W4313479451 hasConcept C106847996 @default.
- W4313479451 hasConcept C119857082 @default.
- W4313479451 hasConcept C151304367 @default.
- W4313479451 hasConcept C153180895 @default.
- W4313479451 hasConcept C154945302 @default.
- W4313479451 hasConcept C155672457 @default.
- W4313479451 hasConcept C171250308 @default.
- W4313479451 hasConcept C186060115 @default.
- W4313479451 hasConcept C192562407 @default.
- W4313479451 hasConcept C27438332 @default.
- W4313479451 hasConcept C41008148 @default.
- W4313479451 hasConcept C50644808 @default.
- W4313479451 hasConcept C66251956 @default.
- W4313479451 hasConcept C69738355 @default.
- W4313479451 hasConcept C86803240 @default.
- W4313479451 hasConceptScore W4313479451C106847996 @default.
- W4313479451 hasConceptScore W4313479451C119857082 @default.
- W4313479451 hasConceptScore W4313479451C151304367 @default.
- W4313479451 hasConceptScore W4313479451C153180895 @default.
- W4313479451 hasConceptScore W4313479451C154945302 @default.
- W4313479451 hasConceptScore W4313479451C155672457 @default.
- W4313479451 hasConceptScore W4313479451C171250308 @default.
- W4313479451 hasConceptScore W4313479451C186060115 @default.
- W4313479451 hasConceptScore W4313479451C192562407 @default.
- W4313479451 hasConceptScore W4313479451C27438332 @default.
- W4313479451 hasConceptScore W4313479451C41008148 @default.
- W4313479451 hasConceptScore W4313479451C50644808 @default.
- W4313479451 hasConceptScore W4313479451C66251956 @default.
- W4313479451 hasConceptScore W4313479451C69738355 @default.
- W4313479451 hasConceptScore W4313479451C86803240 @default.
- W4313479451 hasFunder F4320324299 @default.
- W4313479451 hasLocation W43134794511 @default.
- W4313479451 hasOpenAccess W4313479451 @default.
- W4313479451 hasPrimaryLocation W43134794511 @default.
- W4313479451 hasRelatedWork W2017960228 @default.
- W4313479451 hasRelatedWork W2057748761 @default.
- W4313479451 hasRelatedWork W2066119650 @default.
- W4313479451 hasRelatedWork W2355203151 @default.
- W4313479451 hasRelatedWork W2371006619 @default.
- W4313479451 hasRelatedWork W2380927352 @default.
- W4313479451 hasRelatedWork W3124143050 @default.
- W4313479451 hasRelatedWork W4281487995 @default.
- W4313479451 hasRelatedWork W4367301741 @default.