Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313479596> ?p ?o ?g. }
- W4313479596 endingPage "105735" @default.
- W4313479596 startingPage "105735" @default.
- W4313479596 abstract "Fault diagnosis of wind turbine gearboxes is crucial in ensuring wind farms’ reliability and safety. However, nonstationary working conditions, such as load change or speed regulation, may result in an accuracy deterioration of many existing fault diagnosis approaches. To overcome the issue, this research proposes a nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes using vibration signals. Concretely, we adopt Empirical Mode Decomposition (EMD) to decompose vibration signals into a series of Intrinsic Mode Functions (IMFs). Then, the multi-channel IMFs are fed into a 1D Convolutional Neural Network (CNN) for automatic feature learning and fault classification. Since EMD is a signal processing technique requiring no prior knowledge, the model architecture can be viewed as nearly end-to-end. The proposed approach was validated in a real-world dataset; it proved deep learning models have an overwhelming advantage in representation capacity over traditional shallow models. It also demonstrated that the introduction of EMD as a preprocessing step improves both the training efficiency and the generalization ability of a deep model, thus leading to a better fault diagnosis efficacy under variable working conditions." @default.
- W4313479596 created "2023-01-06" @default.
- W4313479596 creator A5004503144 @default.
- W4313479596 creator A5053958450 @default.
- W4313479596 creator A5057276661 @default.
- W4313479596 creator A5061991728 @default.
- W4313479596 creator A5081928439 @default.
- W4313479596 creator A5082312753 @default.
- W4313479596 date "2023-03-01" @default.
- W4313479596 modified "2023-10-02" @default.
- W4313479596 title "A nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes under nonstationary conditions" @default.
- W4313479596 cites W2007221293 @default.
- W4313479596 cites W2014632329 @default.
- W4313479596 cites W2145219467 @default.
- W4313479596 cites W2309400744 @default.
- W4313479596 cites W2518980640 @default.
- W4313479596 cites W2607416494 @default.
- W4313479596 cites W2619304139 @default.
- W4313479596 cites W2762841298 @default.
- W4313479596 cites W2808496542 @default.
- W4313479596 cites W2896784509 @default.
- W4313479596 cites W2908884823 @default.
- W4313479596 cites W2917014261 @default.
- W4313479596 cites W2973424371 @default.
- W4313479596 cites W2980635665 @default.
- W4313479596 cites W2987147016 @default.
- W4313479596 cites W3005401190 @default.
- W4313479596 cites W3006342871 @default.
- W4313479596 cites W3007806969 @default.
- W4313479596 cites W3008309516 @default.
- W4313479596 cites W3009370740 @default.
- W4313479596 cites W3018759860 @default.
- W4313479596 cites W3022112205 @default.
- W4313479596 cites W3041218800 @default.
- W4313479596 cites W3117912519 @default.
- W4313479596 cites W3143357670 @default.
- W4313479596 cites W3149994345 @default.
- W4313479596 cites W3157475694 @default.
- W4313479596 cites W3164030465 @default.
- W4313479596 cites W3164825936 @default.
- W4313479596 cites W3186683784 @default.
- W4313479596 cites W3201135244 @default.
- W4313479596 cites W3207646706 @default.
- W4313479596 cites W4200258696 @default.
- W4313479596 cites W4200433233 @default.
- W4313479596 cites W4212849476 @default.
- W4313479596 cites W4214526929 @default.
- W4313479596 cites W4214900691 @default.
- W4313479596 cites W4281791607 @default.
- W4313479596 cites W4282962545 @default.
- W4313479596 cites W4283264305 @default.
- W4313479596 cites W4283751174 @default.
- W4313479596 cites W4289868147 @default.
- W4313479596 cites W4292265157 @default.
- W4313479596 cites W4293061168 @default.
- W4313479596 doi "https://doi.org/10.1016/j.engappai.2022.105735" @default.
- W4313479596 hasPublicationYear "2023" @default.
- W4313479596 type Work @default.
- W4313479596 citedByCount "14" @default.
- W4313479596 countsByYear W43134795962023 @default.
- W4313479596 crossrefType "journal-article" @default.
- W4313479596 hasAuthorship W4313479596A5004503144 @default.
- W4313479596 hasAuthorship W4313479596A5053958450 @default.
- W4313479596 hasAuthorship W4313479596A5057276661 @default.
- W4313479596 hasAuthorship W4313479596A5061991728 @default.
- W4313479596 hasAuthorship W4313479596A5081928439 @default.
- W4313479596 hasAuthorship W4313479596A5082312753 @default.
- W4313479596 hasConcept C106131492 @default.
- W4313479596 hasConcept C108583219 @default.
- W4313479596 hasConcept C119599485 @default.
- W4313479596 hasConcept C119857082 @default.
- W4313479596 hasConcept C121332964 @default.
- W4313479596 hasConcept C127313418 @default.
- W4313479596 hasConcept C127413603 @default.
- W4313479596 hasConcept C153180895 @default.
- W4313479596 hasConcept C154945302 @default.
- W4313479596 hasConcept C163258240 @default.
- W4313479596 hasConcept C165205528 @default.
- W4313479596 hasConcept C175551986 @default.
- W4313479596 hasConcept C25570617 @default.
- W4313479596 hasConcept C2778449969 @default.
- W4313479596 hasConcept C31972630 @default.
- W4313479596 hasConcept C34736171 @default.
- W4313479596 hasConcept C41008148 @default.
- W4313479596 hasConcept C43214815 @default.
- W4313479596 hasConcept C62520636 @default.
- W4313479596 hasConcept C74296488 @default.
- W4313479596 hasConcept C78519656 @default.
- W4313479596 hasConcept C78600449 @default.
- W4313479596 hasConcept C81363708 @default.
- W4313479596 hasConceptScore W4313479596C106131492 @default.
- W4313479596 hasConceptScore W4313479596C108583219 @default.
- W4313479596 hasConceptScore W4313479596C119599485 @default.
- W4313479596 hasConceptScore W4313479596C119857082 @default.
- W4313479596 hasConceptScore W4313479596C121332964 @default.
- W4313479596 hasConceptScore W4313479596C127313418 @default.
- W4313479596 hasConceptScore W4313479596C127413603 @default.
- W4313479596 hasConceptScore W4313479596C153180895 @default.