Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313479609> ?p ?o ?g. }
- W4313479609 endingPage "106486" @default.
- W4313479609 startingPage "106486" @default.
- W4313479609 abstract "The battery-powered propulsion system is introduced in the literature as a suitable solution for the CO2 emission challenge induced by aviation. However, because of design and manufacturing factors, during or after abused operational and environmental situations, Lithium-Ion battery (LIB) safety, and reliability cannot be guaranteed. Thus, an effective Battery Management System (BMS), is an essential unit in the Electric Propulsion System (EPS) of Electric Aircraft. Battery state estimation and prediction are vital to providing required safety strategies through acquiring battery data such as current, voltage, and temperature. Various methods of state estimation are practically and technically analyzed and offered in the literature including physics-based, model-based, and data-driven approaches. Among them, the recent method seems to be a novel solution to overcome the current experimental difficulties and inaccuracies. In a data-driven method, the battery is considered as a black box while a large volume of data is applied to learn the internal dynamics of the battery, using Artificial Intelligence (AI) and Machine Learning (ML) approaches. However, there are still major uncertainties and hurdles in the application and using AI in EPS due to data source scarcity, the complexity of computation, and ambiguities in the airworthiness certification process. In this study, a systematic literature review is performed; 948 papers were selected to be analyzed precisely in both qualitative and quantitative approaches to provide descriptive, metadata, and BMS function analysis reports. The goal of the research is to review BMS strategies supported by intelligent algorithms to propose appropriate solutions for battery management of EPS based on the proposed BMS necessary functions. Moreover, current airworthiness certification regulations are analyzed, and it is shown that the existing status is insufficient to satisfy critical issues for employing data-driven methods in the battery management of future electric aircraft including AI safety risk assessment and learning assurance. Finally, trends show an increase in studies on the subject of AI themes application in battery state estimation during the last ten years, especially for the State of Charge and the State of Health. However, there are still gaps in research for the application of intelligent technology in State of Function (SOF) and State of Power (SOP) estimation as one of the most imperative functions of the BMS in EA, which consists of less than 1 % of the total studies in this field." @default.
- W4313479609 created "2023-01-06" @default.
- W4313479609 creator A5007525002 @default.
- W4313479609 creator A5049364324 @default.
- W4313479609 date "2023-03-01" @default.
- W4313479609 modified "2023-10-16" @default.
- W4313479609 title "Comprehensive review of battery state estimation strategies using machine learning for battery Management Systems of Aircraft Propulsion Batteries" @default.
- W4313479609 cites W1052390988 @default.
- W4313479609 cites W1628954589 @default.
- W4313479609 cites W1965746216 @default.
- W4313479609 cites W2006829425 @default.
- W4313479609 cites W2029543381 @default.
- W4313479609 cites W2055531267 @default.
- W4313479609 cites W2071280205 @default.
- W4313479609 cites W2077937117 @default.
- W4313479609 cites W2098841048 @default.
- W4313479609 cites W2134833483 @default.
- W4313479609 cites W2280562613 @default.
- W4313479609 cites W2418122581 @default.
- W4313479609 cites W2498799405 @default.
- W4313479609 cites W2589366957 @default.
- W4313479609 cites W2612785070 @default.
- W4313479609 cites W2621058570 @default.
- W4313479609 cites W2624661965 @default.
- W4313479609 cites W2726406203 @default.
- W4313479609 cites W2770041908 @default.
- W4313479609 cites W2776458183 @default.
- W4313479609 cites W2795079499 @default.
- W4313479609 cites W2883525675 @default.
- W4313479609 cites W2885578090 @default.
- W4313479609 cites W2895147187 @default.
- W4313479609 cites W2896616144 @default.
- W4313479609 cites W2911341021 @default.
- W4313479609 cites W2922306207 @default.
- W4313479609 cites W2953509133 @default.
- W4313479609 cites W2969895413 @default.
- W4313479609 cites W2978202285 @default.
- W4313479609 cites W2985344503 @default.
- W4313479609 cites W2995233586 @default.
- W4313479609 cites W3007030665 @default.
- W4313479609 cites W3009077662 @default.
- W4313479609 cites W3010624101 @default.
- W4313479609 cites W3012264837 @default.
- W4313479609 cites W3013372615 @default.
- W4313479609 cites W3023597205 @default.
- W4313479609 cites W3025182772 @default.
- W4313479609 cites W3047067787 @default.
- W4313479609 cites W3088208750 @default.
- W4313479609 cites W3092392887 @default.
- W4313479609 cites W3096459816 @default.
- W4313479609 cites W3103000140 @default.
- W4313479609 cites W3119025527 @default.
- W4313479609 cites W3122696643 @default.
- W4313479609 cites W3125791603 @default.
- W4313479609 cites W3127344709 @default.
- W4313479609 cites W3159194574 @default.
- W4313479609 cites W3159895308 @default.
- W4313479609 cites W3168403495 @default.
- W4313479609 cites W3175001065 @default.
- W4313479609 cites W3187538253 @default.
- W4313479609 cites W3199419970 @default.
- W4313479609 cites W3199800229 @default.
- W4313479609 cites W3202399408 @default.
- W4313479609 cites W3213181601 @default.
- W4313479609 cites W4200394082 @default.
- W4313479609 cites W4205643252 @default.
- W4313479609 cites W4211262875 @default.
- W4313479609 cites W4220909851 @default.
- W4313479609 cites W4294215472 @default.
- W4313479609 doi "https://doi.org/10.1016/j.est.2022.106486" @default.
- W4313479609 hasPublicationYear "2023" @default.
- W4313479609 type Work @default.
- W4313479609 citedByCount "3" @default.
- W4313479609 countsByYear W43134796092023 @default.
- W4313479609 crossrefType "journal-article" @default.
- W4313479609 hasAuthorship W4313479609A5007525002 @default.
- W4313479609 hasAuthorship W4313479609A5049364324 @default.
- W4313479609 hasConcept C1034443 @default.
- W4313479609 hasConcept C111919701 @default.
- W4313479609 hasConcept C121332964 @default.
- W4313479609 hasConcept C127413603 @default.
- W4313479609 hasConcept C133731056 @default.
- W4313479609 hasConcept C146978453 @default.
- W4313479609 hasConcept C154945302 @default.
- W4313479609 hasConcept C163258240 @default.
- W4313479609 hasConcept C171146098 @default.
- W4313479609 hasConcept C200601418 @default.
- W4313479609 hasConcept C2780440489 @default.
- W4313479609 hasConcept C41008148 @default.
- W4313479609 hasConcept C43214815 @default.
- W4313479609 hasConcept C555008776 @default.
- W4313479609 hasConcept C62520636 @default.
- W4313479609 hasConcept C98045186 @default.
- W4313479609 hasConceptScore W4313479609C1034443 @default.
- W4313479609 hasConceptScore W4313479609C111919701 @default.
- W4313479609 hasConceptScore W4313479609C121332964 @default.
- W4313479609 hasConceptScore W4313479609C127413603 @default.
- W4313479609 hasConceptScore W4313479609C133731056 @default.