Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313479912> ?p ?o ?g. }
- W4313479912 endingPage "115" @default.
- W4313479912 startingPage "107" @default.
- W4313479912 abstract "A hyperspectral image (HSI) has also highly correlated and redundant data, in addition to abundant spatial and spectral information. Only the spectral characteristics were usually utilized to perform the HSI classification in most previous studies, which leads to unsatisfactory accuracy and precision. The combination of Principal Component Analysis (PCA), Local Binary Pattern (LBP) and Back Propagation Neural Network (BPNN) (PCA-LBP-BPNN) was used to propose a novel classification method. More specifically, PCA was first used to reduce the dimensionality of HSIs for obtaining independent spectral bands sensitive to the classified objects. LBP was then adopted to extract the spatial texture features. Finally, the feature vectors were formed by fusing spatial–spectral features and input into BPNN for HSI classification. Three key parameters including the number of principal components (p) and the neurons in the hidden layer (l) as well as the learning rate (r) were optimally selected to improve the classification accuracy. Three publicly available hyperspectral datasets including Pavia University (PU), Salinas (Sa) and Botswana (Bo) were selected to validate the performance by comparing the kNN (k-Nearest Neighbor), SVM (Support Vector Machine) and Contextual Deep Convolutional Neural Network (CDCNN). The overall accuracy of PCA-LBP-BPNN reached 93.67%, 98.09% and 92.97%, respectively, for the three datasets. The method had a satisfying performance than kNN, SVM and CDCNN for the PU and Sa, but it had lower accuracies than kNN and CDCNN for the Bo due to extremely similar spectral responses. PCA-LBP-BPNN generally has satisfactory practicability and robustness in adapting to different hyperspectral datasets." @default.
- W4313479912 created "2023-01-06" @default.
- W4313479912 creator A5019604942 @default.
- W4313479912 creator A5026332974 @default.
- W4313479912 creator A5034105308 @default.
- W4313479912 date "2023-02-01" @default.
- W4313479912 modified "2023-09-26" @default.
- W4313479912 title "A joint method of spatial–spectral features and BP neural network for hyperspectral image classification" @default.
- W4313479912 cites W1485235332 @default.
- W4313479912 cites W1964325474 @default.
- W4313479912 cites W1969204685 @default.
- W4313479912 cites W1977066218 @default.
- W4313479912 cites W1978127050 @default.
- W4313479912 cites W1983900507 @default.
- W4313479912 cites W1992543156 @default.
- W4313479912 cites W1998651992 @default.
- W4313479912 cites W2010797000 @default.
- W4313479912 cites W2020326148 @default.
- W4313479912 cites W2021006603 @default.
- W4313479912 cites W2044465660 @default.
- W4313479912 cites W2110133912 @default.
- W4313479912 cites W2133349950 @default.
- W4313479912 cites W2144188273 @default.
- W4313479912 cites W2154536501 @default.
- W4313479912 cites W2163352848 @default.
- W4313479912 cites W2170186417 @default.
- W4313479912 cites W2171500336 @default.
- W4313479912 cites W2221243399 @default.
- W4313479912 cites W2282992258 @default.
- W4313479912 cites W2344681634 @default.
- W4313479912 cites W2605666222 @default.
- W4313479912 cites W2765375656 @default.
- W4313479912 cites W2801275556 @default.
- W4313479912 cites W2916084569 @default.
- W4313479912 cites W2944250072 @default.
- W4313479912 cites W2949559324 @default.
- W4313479912 cites W2954263310 @default.
- W4313479912 cites W2991488782 @default.
- W4313479912 cites W3005422671 @default.
- W4313479912 cites W3024613819 @default.
- W4313479912 cites W3028453164 @default.
- W4313479912 cites W3039073224 @default.
- W4313479912 cites W3039081519 @default.
- W4313479912 cites W3048259588 @default.
- W4313479912 cites W3089160504 @default.
- W4313479912 cites W3096554124 @default.
- W4313479912 cites W3100499011 @default.
- W4313479912 cites W3103753223 @default.
- W4313479912 cites W3129165086 @default.
- W4313479912 cites W3147363216 @default.
- W4313479912 cites W3173797407 @default.
- W4313479912 cites W3192524834 @default.
- W4313479912 cites W3196844480 @default.
- W4313479912 cites W4213084231 @default.
- W4313479912 cites W4282964431 @default.
- W4313479912 cites W4312743284 @default.
- W4313479912 doi "https://doi.org/10.1016/j.ejrs.2022.12.012" @default.
- W4313479912 hasPublicationYear "2023" @default.
- W4313479912 type Work @default.
- W4313479912 citedByCount "2" @default.
- W4313479912 countsByYear W43134799122023 @default.
- W4313479912 crossrefType "journal-article" @default.
- W4313479912 hasAuthorship W4313479912A5019604942 @default.
- W4313479912 hasAuthorship W4313479912A5026332974 @default.
- W4313479912 hasAuthorship W4313479912A5034105308 @default.
- W4313479912 hasBestOaLocation W43134799121 @default.
- W4313479912 hasConcept C104317684 @default.
- W4313479912 hasConcept C113238511 @default.
- W4313479912 hasConcept C115961682 @default.
- W4313479912 hasConcept C12267149 @default.
- W4313479912 hasConcept C153180895 @default.
- W4313479912 hasConcept C154945302 @default.
- W4313479912 hasConcept C159078339 @default.
- W4313479912 hasConcept C185592680 @default.
- W4313479912 hasConcept C27438332 @default.
- W4313479912 hasConcept C41008148 @default.
- W4313479912 hasConcept C50644808 @default.
- W4313479912 hasConcept C53533937 @default.
- W4313479912 hasConcept C55493867 @default.
- W4313479912 hasConcept C63479239 @default.
- W4313479912 hasConcept C81363708 @default.
- W4313479912 hasConcept C87335442 @default.
- W4313479912 hasConceptScore W4313479912C104317684 @default.
- W4313479912 hasConceptScore W4313479912C113238511 @default.
- W4313479912 hasConceptScore W4313479912C115961682 @default.
- W4313479912 hasConceptScore W4313479912C12267149 @default.
- W4313479912 hasConceptScore W4313479912C153180895 @default.
- W4313479912 hasConceptScore W4313479912C154945302 @default.
- W4313479912 hasConceptScore W4313479912C159078339 @default.
- W4313479912 hasConceptScore W4313479912C185592680 @default.
- W4313479912 hasConceptScore W4313479912C27438332 @default.
- W4313479912 hasConceptScore W4313479912C41008148 @default.
- W4313479912 hasConceptScore W4313479912C50644808 @default.
- W4313479912 hasConceptScore W4313479912C53533937 @default.
- W4313479912 hasConceptScore W4313479912C55493867 @default.
- W4313479912 hasConceptScore W4313479912C63479239 @default.
- W4313479912 hasConceptScore W4313479912C81363708 @default.
- W4313479912 hasConceptScore W4313479912C87335442 @default.