Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313479957> ?p ?o ?g. }
- W4313479957 endingPage "141" @default.
- W4313479957 startingPage "124" @default.
- W4313479957 abstract "Accurate early prediction of heart failure and identification of heart failure sub-phenotypes can enable in-time interventions and treatments, assist with policy decisions, and lead to a better understanding of disease pathophysiology in groups of patients. However, decision making more challenging for clinicians since the available data is complex, heterogeneous, temporal, and different in granularity. Even with much data, it is difficult for a cardiologist to pre-judge a patient’s heart condition at the next visit by relying on data from only one visit. Moreover, complicated and overloaded information bewilders clinicians, bringing obstacles to the stratification of patients and the mining of disease typical patterns in subgroups. To overcome these issues, this study proposes a novel Patient Representation model based on a temporal Bidirectional neural network with an Attention mechanism deep learning model called tBNA-PR. tBNA-PR effectively models heterogeneous and temporal Electronic Health Records (tEHRs) data from past and future directions to obtain informative patient representation to realize accurate heart failure prediction and reasonable patient stratification. Additionally, this study extracts typical diagnosis and prescriptions for disease patterns exploration and identifies significant features of sub-phenotypes for subgroup explanation in the context of complex clinical settings to provide better quality healthcare services and clinical decision support. This study leverages a real-world dataset MIMIC-III database. We carried out experiments on the prediction of heart failure to investigate tBNA-PR, which obtains prediction accuracy of 0.78, F1-Score of 0.7671, and AUC of 0.7198, showing a certain superiority compared with several state-of-the-art benchmarks. Moreover, we identified three distinct sub-phenotypes in all heart failure patients in the dataset with the clustering method and subgroup analysis. Sub-phenotype I has characteristics of more long-term anticoagulants. This sub-group has more patients who have the thrombotic disease. Sub-phenotype II has features of more patients having kidney disease, pneumonia, urinary tract infection, and coronary heart disease surgery history. Sub-phenotype III has characteristics of more patients having acidosis, depressive disorder, esophageal reflux, obstructive sleep apnea, and acquired hypothyroidism. Statistical tests show that the features, including age, creatinine, hemoglobin, urea nitrogen, and blood potassium, are significantly different among the three sub-phenotypes and have particular high importance. The resultant findings from this work have practical implications for clinical decision support." @default.
- W4313479957 created "2023-01-06" @default.
- W4313479957 creator A5028839347 @default.
- W4313479957 creator A5042048777 @default.
- W4313479957 date "2023-01-01" @default.
- W4313479957 modified "2023-10-18" @default.
- W4313479957 title "Heart failure disease prediction and stratification with temporal electronic health records data using patient representation" @default.
- W4313479957 cites W1987971958 @default.
- W4313479957 cites W2051224630 @default.
- W4313479957 cites W2085487226 @default.
- W4313479957 cites W2396881363 @default.
- W4313479957 cites W2404901863 @default.
- W4313479957 cites W2566261028 @default.
- W4313479957 cites W2618408467 @default.
- W4313479957 cites W2896557062 @default.
- W4313479957 cites W2922594471 @default.
- W4313479957 cites W2936446892 @default.
- W4313479957 cites W2944988359 @default.
- W4313479957 cites W2945248062 @default.
- W4313479957 cites W2967597710 @default.
- W4313479957 cites W2968192630 @default.
- W4313479957 cites W2969522674 @default.
- W4313479957 cites W2980815940 @default.
- W4313479957 cites W2999062607 @default.
- W4313479957 cites W3027170410 @default.
- W4313479957 cites W3044345313 @default.
- W4313479957 cites W3087520709 @default.
- W4313479957 cites W3099136959 @default.
- W4313479957 cites W3107766593 @default.
- W4313479957 cites W3122022143 @default.
- W4313479957 cites W3126843896 @default.
- W4313479957 cites W3140277041 @default.
- W4313479957 cites W3167873286 @default.
- W4313479957 cites W3172455217 @default.
- W4313479957 cites W3181884062 @default.
- W4313479957 cites W3183848791 @default.
- W4313479957 cites W3193534298 @default.
- W4313479957 cites W3193598686 @default.
- W4313479957 cites W3215092365 @default.
- W4313479957 cites W4200421775 @default.
- W4313479957 cites W4206629261 @default.
- W4313479957 cites W4210242902 @default.
- W4313479957 cites W4213346784 @default.
- W4313479957 cites W4220653406 @default.
- W4313479957 cites W4220837239 @default.
- W4313479957 cites W4220996181 @default.
- W4313479957 cites W4223469937 @default.
- W4313479957 cites W4225123706 @default.
- W4313479957 cites W4225982657 @default.
- W4313479957 cites W4226063843 @default.
- W4313479957 cites W4226146147 @default.
- W4313479957 cites W4280494299 @default.
- W4313479957 cites W4280625709 @default.
- W4313479957 cites W4281683453 @default.
- W4313479957 cites W4285108805 @default.
- W4313479957 cites W4287836366 @default.
- W4313479957 cites W4290805428 @default.
- W4313479957 cites W4307391038 @default.
- W4313479957 cites W4308119340 @default.
- W4313479957 doi "https://doi.org/10.1016/j.bbe.2022.12.008" @default.
- W4313479957 hasPublicationYear "2023" @default.
- W4313479957 type Work @default.
- W4313479957 citedByCount "3" @default.
- W4313479957 countsByYear W43134799572023 @default.
- W4313479957 crossrefType "journal-article" @default.
- W4313479957 hasAuthorship W4313479957A5028839347 @default.
- W4313479957 hasAuthorship W4313479957A5042048777 @default.
- W4313479957 hasConcept C119857082 @default.
- W4313479957 hasConcept C124101348 @default.
- W4313479957 hasConcept C126322002 @default.
- W4313479957 hasConcept C151730666 @default.
- W4313479957 hasConcept C154945302 @default.
- W4313479957 hasConcept C17744445 @default.
- W4313479957 hasConcept C199539241 @default.
- W4313479957 hasConcept C2776359362 @default.
- W4313479957 hasConcept C2778198053 @default.
- W4313479957 hasConcept C2779134260 @default.
- W4313479957 hasConcept C2779343474 @default.
- W4313479957 hasConcept C41008148 @default.
- W4313479957 hasConcept C45804977 @default.
- W4313479957 hasConcept C71924100 @default.
- W4313479957 hasConcept C86803240 @default.
- W4313479957 hasConcept C94625758 @default.
- W4313479957 hasConceptScore W4313479957C119857082 @default.
- W4313479957 hasConceptScore W4313479957C124101348 @default.
- W4313479957 hasConceptScore W4313479957C126322002 @default.
- W4313479957 hasConceptScore W4313479957C151730666 @default.
- W4313479957 hasConceptScore W4313479957C154945302 @default.
- W4313479957 hasConceptScore W4313479957C17744445 @default.
- W4313479957 hasConceptScore W4313479957C199539241 @default.
- W4313479957 hasConceptScore W4313479957C2776359362 @default.
- W4313479957 hasConceptScore W4313479957C2778198053 @default.
- W4313479957 hasConceptScore W4313479957C2779134260 @default.
- W4313479957 hasConceptScore W4313479957C2779343474 @default.
- W4313479957 hasConceptScore W4313479957C41008148 @default.
- W4313479957 hasConceptScore W4313479957C45804977 @default.
- W4313479957 hasConceptScore W4313479957C71924100 @default.
- W4313479957 hasConceptScore W4313479957C86803240 @default.