Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313481750> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4313481750 abstract "Currently, skin cancer is the most commonly diagnosed form of cancer in humans and is one of the leading causes of death in patients with cancer. Biopsy methods are an invasive research method and are not always available for primary diagnosis. Imaging methods have low accuracy and depend on the experience of the dermatologist. Artificial intelligence technologies can match and surpass visual analysis methods in accuracy, but they have the risk of a false negative response when a malignant pigmented lesion can be recognized as benign. One possible way to improve accuracy and reduce the risk of false negatives is to analyze heterogeneous data, combine different preprocessing methods, and use modified loss functions to eliminate the negative impact of unbalanced dermatological data. The paper proposes a multimodal neural network system with a modified cross-entropy loss function that is sensitive to unbalanced heterogeneous dermatological data. The accuracy of recognition in 10 diagnostically significant categories for the proposed system was 85.19%. The novelty of the proposed system lies in the use of cross-entropy loss when training the modified function with the help of weight coefficients. The introduction of weighting factors has reduced the number of false negative forecasts, as well as improved accuracy by 1.02-4.03 percentage points compared to the original multimodal systems. The introduction of the proposed multimodal system as an auxiliary diagnostic tool can reduce the consumption of financial and labor resources involved in the medical industry, as well as increase the chance of early detection of skin cancer." @default.
- W4313481750 created "2023-01-06" @default.
- W4313481750 creator A5001230065 @default.
- W4313481750 creator A5032223985 @default.
- W4313481750 creator A5062702974 @default.
- W4313481750 date "2023-01-03" @default.
- W4313481750 modified "2023-10-16" @default.
- W4313481750 title "Multimodal Neural Network System for Skin Cancer Recognition with a Modified Cross-Entropy Loss Function" @default.
- W4313481750 doi "https://doi.org/10.20944/preprints202301.0022.v1" @default.
- W4313481750 hasPublicationYear "2023" @default.
- W4313481750 type Work @default.
- W4313481750 citedByCount "0" @default.
- W4313481750 crossrefType "posted-content" @default.
- W4313481750 hasAuthorship W4313481750A5001230065 @default.
- W4313481750 hasAuthorship W4313481750A5032223985 @default.
- W4313481750 hasAuthorship W4313481750A5062702974 @default.
- W4313481750 hasBestOaLocation W43134817501 @default.
- W4313481750 hasConcept C106301342 @default.
- W4313481750 hasConcept C119857082 @default.
- W4313481750 hasConcept C121332964 @default.
- W4313481750 hasConcept C126838900 @default.
- W4313481750 hasConcept C138885662 @default.
- W4313481750 hasConcept C153180895 @default.
- W4313481750 hasConcept C154945302 @default.
- W4313481750 hasConcept C167981619 @default.
- W4313481750 hasConcept C183115368 @default.
- W4313481750 hasConcept C27206212 @default.
- W4313481750 hasConcept C2778738651 @default.
- W4313481750 hasConcept C34736171 @default.
- W4313481750 hasConcept C41008148 @default.
- W4313481750 hasConcept C50644808 @default.
- W4313481750 hasConcept C62520636 @default.
- W4313481750 hasConcept C71924100 @default.
- W4313481750 hasConceptScore W4313481750C106301342 @default.
- W4313481750 hasConceptScore W4313481750C119857082 @default.
- W4313481750 hasConceptScore W4313481750C121332964 @default.
- W4313481750 hasConceptScore W4313481750C126838900 @default.
- W4313481750 hasConceptScore W4313481750C138885662 @default.
- W4313481750 hasConceptScore W4313481750C153180895 @default.
- W4313481750 hasConceptScore W4313481750C154945302 @default.
- W4313481750 hasConceptScore W4313481750C167981619 @default.
- W4313481750 hasConceptScore W4313481750C183115368 @default.
- W4313481750 hasConceptScore W4313481750C27206212 @default.
- W4313481750 hasConceptScore W4313481750C2778738651 @default.
- W4313481750 hasConceptScore W4313481750C34736171 @default.
- W4313481750 hasConceptScore W4313481750C41008148 @default.
- W4313481750 hasConceptScore W4313481750C50644808 @default.
- W4313481750 hasConceptScore W4313481750C62520636 @default.
- W4313481750 hasConceptScore W4313481750C71924100 @default.
- W4313481750 hasLocation W43134817501 @default.
- W4313481750 hasOpenAccess W4313481750 @default.
- W4313481750 hasPrimaryLocation W43134817501 @default.
- W4313481750 hasRelatedWork W1502614025 @default.
- W4313481750 hasRelatedWork W2066259560 @default.
- W4313481750 hasRelatedWork W2126100045 @default.
- W4313481750 hasRelatedWork W2262783296 @default.
- W4313481750 hasRelatedWork W2380927352 @default.
- W4313481750 hasRelatedWork W2391959412 @default.
- W4313481750 hasRelatedWork W2728578317 @default.
- W4313481750 hasRelatedWork W2948131761 @default.
- W4313481750 hasRelatedWork W4211209597 @default.
- W4313481750 hasRelatedWork W1629725936 @default.
- W4313481750 isParatext "false" @default.
- W4313481750 isRetracted "false" @default.
- W4313481750 workType "article" @default.