Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313481805> ?p ?o ?g. }
- W4313481805 abstract "The fast and accurate yield estimates with the increasing availability and variety of global satellite products and the rapid development of new algorithms remain a goal for precision agriculture and food security. However, the consistency and reliability of suitable methodologies that provide accurate crop yield outcomes still need to be explored. The study investigates the coupling of crop modeling and machine learning (ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and provides examples for the Free State of Bavaria (70,550 km 2 ), Germany, in 2019. The main objectives are to find whether a coupling approach [Light Use Efficiency (LUE) + Random Forest (RF)] would result in better and more accurate yield predictions compared to results provided with other models not using the LUE. Four different RF models [RF1 (input: Normalized Difference Vegetation Index (NDVI)), RF2 (input: climate variables), RF3 (input: NDVI + climate variables), RF4 (input: LUE generated biomass + climate variables)], and one semi-empiric LUE model were designed with different input requirements to find the best predictors of crop monitoring. The results indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2) could not be the most accurate, reliable, and precise solution for crop monitoring; however, their combined use (in RF3) resulted in higher accuracies. Notably, the study suggested the coupling of the LUE model variables to the RF4 model can reduce the relative root mean square error (RRMSE) from −8% (WW) and −1.6% (OSR) and increase the R 2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. Moreover, the research compares models yield outputs by inputting three different spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the performance of models with higher mean R 2 [0.80 (WW), 0.69 (OSR)], and lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-based crop biomass, solar radiation, and temperature are found to be the most influential variables in the yield prediction of both crops." @default.
- W4313481805 created "2023-01-06" @default.
- W4313481805 creator A5027527228 @default.
- W4313481805 creator A5037803215 @default.
- W4313481805 creator A5040298767 @default.
- W4313481805 creator A5051002421 @default.
- W4313481805 creator A5053834532 @default.
- W4313481805 creator A5053926794 @default.
- W4313481805 creator A5058103673 @default.
- W4313481805 date "2023-01-04" @default.
- W4313481805 modified "2023-09-30" @default.
- W4313481805 title "Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape" @default.
- W4313481805 cites W1512584774 @default.
- W4313481805 cites W1965347260 @default.
- W4313481805 cites W1997902957 @default.
- W4313481805 cites W2004303413 @default.
- W4313481805 cites W2018627383 @default.
- W4313481805 cites W2024689500 @default.
- W4313481805 cites W2035353105 @default.
- W4313481805 cites W2037896669 @default.
- W4313481805 cites W2037995585 @default.
- W4313481805 cites W2053819103 @default.
- W4313481805 cites W2057021477 @default.
- W4313481805 cites W2061091717 @default.
- W4313481805 cites W2061929982 @default.
- W4313481805 cites W2070286344 @default.
- W4313481805 cites W2072093516 @default.
- W4313481805 cites W2079921704 @default.
- W4313481805 cites W2080344679 @default.
- W4313481805 cites W2081399384 @default.
- W4313481805 cites W2088603520 @default.
- W4313481805 cites W2094507162 @default.
- W4313481805 cites W2098418965 @default.
- W4313481805 cites W2099507093 @default.
- W4313481805 cites W2099534828 @default.
- W4313481805 cites W2105307752 @default.
- W4313481805 cites W2154700052 @default.
- W4313481805 cites W2161557312 @default.
- W4313481805 cites W2212980623 @default.
- W4313481805 cites W2272679289 @default.
- W4313481805 cites W2325718943 @default.
- W4313481805 cites W2416782259 @default.
- W4313481805 cites W2555998638 @default.
- W4313481805 cites W2584842592 @default.
- W4313481805 cites W2585282541 @default.
- W4313481805 cites W2792871608 @default.
- W4313481805 cites W2802129483 @default.
- W4313481805 cites W2811034169 @default.
- W4313481805 cites W2904919312 @default.
- W4313481805 cites W2905983018 @default.
- W4313481805 cites W2911964244 @default.
- W4313481805 cites W2921053708 @default.
- W4313481805 cites W2982418982 @default.
- W4313481805 cites W2982571809 @default.
- W4313481805 cites W2992750578 @default.
- W4313481805 cites W3000336815 @default.
- W4313481805 cites W3004416218 @default.
- W4313481805 cites W3025949386 @default.
- W4313481805 cites W3033521935 @default.
- W4313481805 cites W3048587306 @default.
- W4313481805 cites W3098019734 @default.
- W4313481805 cites W3102148818 @default.
- W4313481805 cites W3103444592 @default.
- W4313481805 cites W3121715254 @default.
- W4313481805 cites W3170400925 @default.
- W4313481805 cites W4200225068 @default.
- W4313481805 cites W4210478761 @default.
- W4313481805 cites W4220719009 @default.
- W4313481805 cites W4244762019 @default.
- W4313481805 cites W4281381779 @default.
- W4313481805 cites W4296312479 @default.
- W4313481805 doi "https://doi.org/10.3389/frsen.2022.1010978" @default.
- W4313481805 hasPublicationYear "2023" @default.
- W4313481805 type Work @default.
- W4313481805 citedByCount "3" @default.
- W4313481805 countsByYear W43134818052023 @default.
- W4313481805 crossrefType "journal-article" @default.
- W4313481805 hasAuthorship W4313481805A5027527228 @default.
- W4313481805 hasAuthorship W4313481805A5037803215 @default.
- W4313481805 hasAuthorship W4313481805A5040298767 @default.
- W4313481805 hasAuthorship W4313481805A5051002421 @default.
- W4313481805 hasAuthorship W4313481805A5053834532 @default.
- W4313481805 hasAuthorship W4313481805A5053926794 @default.
- W4313481805 hasAuthorship W4313481805A5058103673 @default.
- W4313481805 hasBestOaLocation W43134818051 @default.
- W4313481805 hasConcept C105795698 @default.
- W4313481805 hasConcept C118518473 @default.
- W4313481805 hasConcept C119857082 @default.
- W4313481805 hasConcept C126343540 @default.
- W4313481805 hasConcept C127413603 @default.
- W4313481805 hasConcept C132651083 @default.
- W4313481805 hasConcept C134121241 @default.
- W4313481805 hasConcept C137580998 @default.
- W4313481805 hasConcept C139945424 @default.
- W4313481805 hasConcept C142724271 @default.
- W4313481805 hasConcept C1549246 @default.
- W4313481805 hasConcept C169258074 @default.
- W4313481805 hasConcept C18903297 @default.
- W4313481805 hasConcept C191897082 @default.
- W4313481805 hasConcept C192562407 @default.