Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313483370> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4313483370 abstract "Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup. Hair and scalp-related diseases often go unnoticed in the beginning. Sometimes, a patient cannot differentiate between hair loss and regular hair fall. Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests. Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness. Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors. These applications assist clinicians and patients and provide an initial insight into early-stage symptoms. In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis. However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging. 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate. After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.2%, with a validation accuracy of 91.1%. The precision and recall score of alopecia, psoriasis, and folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a dataset of the scalp images for future prospective researchers." @default.
- W4313483370 created "2023-01-06" @default.
- W4313483370 creator A5025327398 @default.
- W4313483370 creator A5073029169 @default.
- W4313483370 date "2022-12-30" @default.
- W4313483370 modified "2023-09-30" @default.
- W4313483370 title "Hair and Scalp Disease Detection using Machine Learning and Image Processing" @default.
- W4313483370 doi "https://doi.org/10.48550/arxiv.2301.00122" @default.
- W4313483370 hasPublicationYear "2022" @default.
- W4313483370 type Work @default.
- W4313483370 citedByCount "0" @default.
- W4313483370 crossrefType "posted-content" @default.
- W4313483370 hasAuthorship W4313483370A5025327398 @default.
- W4313483370 hasAuthorship W4313483370A5073029169 @default.
- W4313483370 hasBestOaLocation W43134833701 @default.
- W4313483370 hasConcept C108583219 @default.
- W4313483370 hasConcept C119857082 @default.
- W4313483370 hasConcept C127413603 @default.
- W4313483370 hasConcept C153180895 @default.
- W4313483370 hasConcept C154945302 @default.
- W4313483370 hasConcept C16005928 @default.
- W4313483370 hasConcept C200601418 @default.
- W4313483370 hasConcept C2776360568 @default.
- W4313483370 hasConcept C2778515351 @default.
- W4313483370 hasConcept C2779248115 @default.
- W4313483370 hasConcept C2780505938 @default.
- W4313483370 hasConcept C41008148 @default.
- W4313483370 hasConcept C71924100 @default.
- W4313483370 hasConcept C81363708 @default.
- W4313483370 hasConceptScore W4313483370C108583219 @default.
- W4313483370 hasConceptScore W4313483370C119857082 @default.
- W4313483370 hasConceptScore W4313483370C127413603 @default.
- W4313483370 hasConceptScore W4313483370C153180895 @default.
- W4313483370 hasConceptScore W4313483370C154945302 @default.
- W4313483370 hasConceptScore W4313483370C16005928 @default.
- W4313483370 hasConceptScore W4313483370C200601418 @default.
- W4313483370 hasConceptScore W4313483370C2776360568 @default.
- W4313483370 hasConceptScore W4313483370C2778515351 @default.
- W4313483370 hasConceptScore W4313483370C2779248115 @default.
- W4313483370 hasConceptScore W4313483370C2780505938 @default.
- W4313483370 hasConceptScore W4313483370C41008148 @default.
- W4313483370 hasConceptScore W4313483370C71924100 @default.
- W4313483370 hasConceptScore W4313483370C81363708 @default.
- W4313483370 hasLocation W43134833701 @default.
- W4313483370 hasOpenAccess W4313483370 @default.
- W4313483370 hasPrimaryLocation W43134833701 @default.
- W4313483370 hasRelatedWork W2337926734 @default.
- W4313483370 hasRelatedWork W2732542196 @default.
- W4313483370 hasRelatedWork W2738221750 @default.
- W4313483370 hasRelatedWork W3021430260 @default.
- W4313483370 hasRelatedWork W3136076031 @default.
- W4313483370 hasRelatedWork W3156786002 @default.
- W4313483370 hasRelatedWork W3186111093 @default.
- W4313483370 hasRelatedWork W4214561993 @default.
- W4313483370 hasRelatedWork W4311257506 @default.
- W4313483370 hasRelatedWork W564581980 @default.
- W4313483370 isParatext "false" @default.
- W4313483370 isRetracted "false" @default.
- W4313483370 workType "article" @default.