Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313483476> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4313483476 abstract "Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data." @default.
- W4313483476 created "2023-01-06" @default.
- W4313483476 creator A5021905687 @default.
- W4313483476 creator A5027081164 @default.
- W4313483476 creator A5033884558 @default.
- W4313483476 creator A5058095576 @default.
- W4313483476 creator A5071884128 @default.
- W4313483476 creator A5074282277 @default.
- W4313483476 date "2022-12-31" @default.
- W4313483476 modified "2023-10-08" @default.
- W4313483476 title "Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction" @default.
- W4313483476 doi "https://doi.org/10.48550/arxiv.2301.00127" @default.
- W4313483476 hasPublicationYear "2022" @default.
- W4313483476 type Work @default.
- W4313483476 citedByCount "0" @default.
- W4313483476 crossrefType "posted-content" @default.
- W4313483476 hasAuthorship W4313483476A5021905687 @default.
- W4313483476 hasAuthorship W4313483476A5027081164 @default.
- W4313483476 hasAuthorship W4313483476A5033884558 @default.
- W4313483476 hasAuthorship W4313483476A5058095576 @default.
- W4313483476 hasAuthorship W4313483476A5071884128 @default.
- W4313483476 hasAuthorship W4313483476A5074282277 @default.
- W4313483476 hasBestOaLocation W43134834761 @default.
- W4313483476 hasConcept C108583219 @default.
- W4313483476 hasConcept C11413529 @default.
- W4313483476 hasConcept C126838900 @default.
- W4313483476 hasConcept C134306372 @default.
- W4313483476 hasConcept C135252773 @default.
- W4313483476 hasConcept C141379421 @default.
- W4313483476 hasConcept C143409427 @default.
- W4313483476 hasConcept C146849305 @default.
- W4313483476 hasConcept C153180895 @default.
- W4313483476 hasConcept C154945302 @default.
- W4313483476 hasConcept C157787499 @default.
- W4313483476 hasConcept C177148314 @default.
- W4313483476 hasConcept C17744445 @default.
- W4313483476 hasConcept C199539241 @default.
- W4313483476 hasConcept C2776135515 @default.
- W4313483476 hasConcept C2776359362 @default.
- W4313483476 hasConcept C33923547 @default.
- W4313483476 hasConcept C41008148 @default.
- W4313483476 hasConcept C41727105 @default.
- W4313483476 hasConcept C50644808 @default.
- W4313483476 hasConcept C71924100 @default.
- W4313483476 hasConcept C94625758 @default.
- W4313483476 hasConceptScore W4313483476C108583219 @default.
- W4313483476 hasConceptScore W4313483476C11413529 @default.
- W4313483476 hasConceptScore W4313483476C126838900 @default.
- W4313483476 hasConceptScore W4313483476C134306372 @default.
- W4313483476 hasConceptScore W4313483476C135252773 @default.
- W4313483476 hasConceptScore W4313483476C141379421 @default.
- W4313483476 hasConceptScore W4313483476C143409427 @default.
- W4313483476 hasConceptScore W4313483476C146849305 @default.
- W4313483476 hasConceptScore W4313483476C153180895 @default.
- W4313483476 hasConceptScore W4313483476C154945302 @default.
- W4313483476 hasConceptScore W4313483476C157787499 @default.
- W4313483476 hasConceptScore W4313483476C177148314 @default.
- W4313483476 hasConceptScore W4313483476C17744445 @default.
- W4313483476 hasConceptScore W4313483476C199539241 @default.
- W4313483476 hasConceptScore W4313483476C2776135515 @default.
- W4313483476 hasConceptScore W4313483476C2776359362 @default.
- W4313483476 hasConceptScore W4313483476C33923547 @default.
- W4313483476 hasConceptScore W4313483476C41008148 @default.
- W4313483476 hasConceptScore W4313483476C41727105 @default.
- W4313483476 hasConceptScore W4313483476C50644808 @default.
- W4313483476 hasConceptScore W4313483476C71924100 @default.
- W4313483476 hasConceptScore W4313483476C94625758 @default.
- W4313483476 hasLocation W43134834761 @default.
- W4313483476 hasOpenAccess W4313483476 @default.
- W4313483476 hasPrimaryLocation W43134834761 @default.
- W4313483476 hasRelatedWork W1984012726 @default.
- W4313483476 hasRelatedWork W2131425457 @default.
- W4313483476 hasRelatedWork W2159607082 @default.
- W4313483476 hasRelatedWork W2577454618 @default.
- W4313483476 hasRelatedWork W2805738766 @default.
- W4313483476 hasRelatedWork W2977723824 @default.
- W4313483476 hasRelatedWork W2977971164 @default.
- W4313483476 hasRelatedWork W3199821908 @default.
- W4313483476 hasRelatedWork W4225845629 @default.
- W4313483476 hasRelatedWork W4309880455 @default.
- W4313483476 isParatext "false" @default.
- W4313483476 isRetracted "false" @default.
- W4313483476 workType "article" @default.