Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313483642> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4313483642 abstract "In the context of metric geometry, we introduce a new necessary and sufficient condition for the convergence of an inductive sequence of quantum compact metric spaces for the Gromov-Hausdorff propinquity, which is a noncommutative analogue of the Gromov-Hausdorff distance for compact metric spaces. This condition is easy to verify in many examples, such as quantum compact metric spaces associated to AF algebras or certain twisted convolution C*-algebras of discrete inductive limit groups. Our condition also implies the convergence of an inductive sequence of spectral triples in the sense of the spectral propinquity, a generalization of the Gromov-Hausdorff propinquity on quantum compact metric spaces to the space of metric spectral triples. In particular we show the convergence of the state spaces of the underlying C*-algebras as quantum compact metric spaces, and also the convergence of the quantum dynamics induced by the Dirac operators in the spectral triples. We apply these results to new classes of inductive limit of even spectral triples on noncommutative solenoids and Bunce-Deddens C*-algebras. Our construction, which involves length functions with bounded doubling, adds geometric information and highlights the structure of these twisted C*-algebras as inductive limits." @default.
- W4313483642 created "2023-01-06" @default.
- W4313483642 creator A5000752489 @default.
- W4313483642 creator A5019016618 @default.
- W4313483642 creator A5033543867 @default.
- W4313483642 date "2022-12-31" @default.
- W4313483642 modified "2023-09-30" @default.
- W4313483642 title "Convergence of inductive sequences of spectral triples for the spectral propinquity" @default.
- W4313483642 doi "https://doi.org/10.48550/arxiv.2301.00274" @default.
- W4313483642 hasPublicationYear "2022" @default.
- W4313483642 type Work @default.
- W4313483642 citedByCount "0" @default.
- W4313483642 crossrefType "posted-content" @default.
- W4313483642 hasAuthorship W4313483642A5000752489 @default.
- W4313483642 hasAuthorship W4313483642A5019016618 @default.
- W4313483642 hasAuthorship W4313483642A5033543867 @default.
- W4313483642 hasBestOaLocation W43134836421 @default.
- W4313483642 hasConcept C118615104 @default.
- W4313483642 hasConcept C129301229 @default.
- W4313483642 hasConcept C191399826 @default.
- W4313483642 hasConcept C198043062 @default.
- W4313483642 hasConcept C202444582 @default.
- W4313483642 hasConcept C33923547 @default.
- W4313483642 hasConcept C68797384 @default.
- W4313483642 hasConceptScore W4313483642C118615104 @default.
- W4313483642 hasConceptScore W4313483642C129301229 @default.
- W4313483642 hasConceptScore W4313483642C191399826 @default.
- W4313483642 hasConceptScore W4313483642C198043062 @default.
- W4313483642 hasConceptScore W4313483642C202444582 @default.
- W4313483642 hasConceptScore W4313483642C33923547 @default.
- W4313483642 hasConceptScore W4313483642C68797384 @default.
- W4313483642 hasLocation W43134836421 @default.
- W4313483642 hasOpenAccess W4313483642 @default.
- W4313483642 hasPrimaryLocation W43134836421 @default.
- W4313483642 hasRelatedWork W1516153120 @default.
- W4313483642 hasRelatedWork W2016243739 @default.
- W4313483642 hasRelatedWork W2034487574 @default.
- W4313483642 hasRelatedWork W2082260245 @default.
- W4313483642 hasRelatedWork W2326718950 @default.
- W4313483642 hasRelatedWork W2335947168 @default.
- W4313483642 hasRelatedWork W2949999162 @default.
- W4313483642 hasRelatedWork W2964320088 @default.
- W4313483642 hasRelatedWork W4212814459 @default.
- W4313483642 hasRelatedWork W4298124760 @default.
- W4313483642 isParatext "false" @default.
- W4313483642 isRetracted "false" @default.
- W4313483642 workType "article" @default.