Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313483744> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4313483744 abstract "The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In this paper, we propose a simple iterative least squares algorithm for matrix factor models, in contrast to the Principal Component Analysis (PCA)-based methods in the literature. In detail, we first propose to estimate the latent factor matrices by projecting the observations with two deterministic weight matrices, which are chosen to diversify away the idiosyncratic components. We show that the inferences on factors are still asymptotically valid even if we overestimate both the row/column factor numbers. We then estimate the row/column loading matrices by minimizing the squared loss function under certain identifiability conditions. The resultant estimators of the loading matrices are treated as the new weight/projection matrices and thus the above update procedure can be iteratively performed until convergence. Theoretically, given the true dimensions of the factor matrices, we derive the convergence rates of the estimators for loading matrices and common components at any $s$-th step iteration. Additionally, we propose an eigenvalue-ratio method to estimate the pair of factor numbers consistently. Thorough numerical simulations are conducted to investigate the finite-sample performance of the proposed methods and two real datasets associated with financial portfolios and multinational macroeconomic indices are used to illustrate our algorithm's practical usefulness." @default.
- W4313483744 created "2023-01-06" @default.
- W4313483744 creator A5010613556 @default.
- W4313483744 creator A5013339942 @default.
- W4313483744 creator A5016628945 @default.
- W4313483744 date "2023-01-01" @default.
- W4313483744 modified "2023-09-28" @default.
- W4313483744 title "An Efficient Iterative Least Squares Algorithm for Large-dimensional Matrix Factor Model via Random Projection" @default.
- W4313483744 doi "https://doi.org/10.48550/arxiv.2301.00360" @default.
- W4313483744 hasPublicationYear "2023" @default.
- W4313483744 type Work @default.
- W4313483744 citedByCount "0" @default.
- W4313483744 crossrefType "posted-content" @default.
- W4313483744 hasAuthorship W4313483744A5010613556 @default.
- W4313483744 hasAuthorship W4313483744A5013339942 @default.
- W4313483744 hasAuthorship W4313483744A5016628945 @default.
- W4313483744 hasBestOaLocation W43134837441 @default.
- W4313483744 hasConcept C105795698 @default.
- W4313483744 hasConcept C106487976 @default.
- W4313483744 hasConcept C10879293 @default.
- W4313483744 hasConcept C11413529 @default.
- W4313483744 hasConcept C114614502 @default.
- W4313483744 hasConcept C121332964 @default.
- W4313483744 hasConcept C126255220 @default.
- W4313483744 hasConcept C158693339 @default.
- W4313483744 hasConcept C159985019 @default.
- W4313483744 hasConcept C162324750 @default.
- W4313483744 hasConcept C185429906 @default.
- W4313483744 hasConcept C192562407 @default.
- W4313483744 hasConcept C27438332 @default.
- W4313483744 hasConcept C2777303404 @default.
- W4313483744 hasConcept C28826006 @default.
- W4313483744 hasConcept C33676613 @default.
- W4313483744 hasConcept C33923547 @default.
- W4313483744 hasConcept C50522688 @default.
- W4313483744 hasConcept C57493831 @default.
- W4313483744 hasConcept C62520636 @default.
- W4313483744 hasConcept C9936470 @default.
- W4313483744 hasConceptScore W4313483744C105795698 @default.
- W4313483744 hasConceptScore W4313483744C106487976 @default.
- W4313483744 hasConceptScore W4313483744C10879293 @default.
- W4313483744 hasConceptScore W4313483744C11413529 @default.
- W4313483744 hasConceptScore W4313483744C114614502 @default.
- W4313483744 hasConceptScore W4313483744C121332964 @default.
- W4313483744 hasConceptScore W4313483744C126255220 @default.
- W4313483744 hasConceptScore W4313483744C158693339 @default.
- W4313483744 hasConceptScore W4313483744C159985019 @default.
- W4313483744 hasConceptScore W4313483744C162324750 @default.
- W4313483744 hasConceptScore W4313483744C185429906 @default.
- W4313483744 hasConceptScore W4313483744C192562407 @default.
- W4313483744 hasConceptScore W4313483744C27438332 @default.
- W4313483744 hasConceptScore W4313483744C2777303404 @default.
- W4313483744 hasConceptScore W4313483744C28826006 @default.
- W4313483744 hasConceptScore W4313483744C33676613 @default.
- W4313483744 hasConceptScore W4313483744C33923547 @default.
- W4313483744 hasConceptScore W4313483744C50522688 @default.
- W4313483744 hasConceptScore W4313483744C57493831 @default.
- W4313483744 hasConceptScore W4313483744C62520636 @default.
- W4313483744 hasConceptScore W4313483744C9936470 @default.
- W4313483744 hasLocation W43134837441 @default.
- W4313483744 hasLocation W43134837442 @default.
- W4313483744 hasOpenAccess W4313483744 @default.
- W4313483744 hasPrimaryLocation W43134837441 @default.
- W4313483744 hasRelatedWork W2055894834 @default.
- W4313483744 hasRelatedWork W2059582906 @default.
- W4313483744 hasRelatedWork W2127613611 @default.
- W4313483744 hasRelatedWork W2369383678 @default.
- W4313483744 hasRelatedWork W2970094626 @default.
- W4313483744 hasRelatedWork W2981157695 @default.
- W4313483744 hasRelatedWork W3046880536 @default.
- W4313483744 hasRelatedWork W3123910301 @default.
- W4313483744 hasRelatedWork W4377864670 @default.
- W4313483744 hasRelatedWork W2247752362 @default.
- W4313483744 isParatext "false" @default.
- W4313483744 isRetracted "false" @default.
- W4313483744 workType "article" @default.